Skip to main content

RNA and Protein Production

  • Chapter
Gene Function
  • 82 Accesses

Abstract

Cellular processes are not carried out directly by the hereditary material. The main agents required for growth are the biological catalysts, enzymes, protein molecules that carry, in some instances, organic prosthetic groups. In addition, non-enzymatic proteins have a major structural role. Many hundreds, perhaps as many as one to two thousand different proteins in the case of E. coli, one of the simplest of unicellular organisms, are necessary for growth. Thus, the genetic material of an organism contains the information necessary for survival — it is the ‘programme’ for cellular growth — without being directly involved. How is this information realised? Gene expression consists of two major stages, transcription and translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Crick, F.H.C. (1970) ‘Central dogma of molecular biology’, Nature, 227, 561–563.

    Article  Google Scholar 

  • Jacob, F. and Monod, J. (1961) ‘Genetic regulatory mechanisms in the synthesis of proteins’, J. Mol. Biol., 3, 318–356.

    Article  Google Scholar 

DNA Transcription

  • Chamberlin, M.J. (1976) ‘RNA polymerase — an overview’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 17–67.

    Google Scholar 

  • Lathe, R. (1978) ‘RNA polymerase in Escherichia colis Curr. Topics Microbiol. Immunol., 83, 37–92.

    Google Scholar 

The Elements of Transcription

  • Bautz, E.K.F. (1976) ‘Bacteriophage-induced DNA-dependent RNA polymerase’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 273–284.

    Google Scholar 

  • Burgess, R.R., Travers, A.A., Dunn, J.J. and Bautz, E.K.F. (1969) ‘Factor stimulating transcription by RNA polymerase’, Nature, 221, 43–46.

    Article  Google Scholar 

  • Burgess, R.R. (1976) ‘Purification and physical properties ofE. coli RNA polymerase’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 69–100.

    Google Scholar 

  • Krakow, J.S., Rhodes, G. and Jovin, T.M. (1976) ‘RNA polymerase: Catalytic mechanisms and inhibitors’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 127–157.

    Google Scholar 

  • Yura, T. and Ishihama, A. (1979) ‘Genetics of bacterial RNA polymerases’,Ann. Rev. Genet., 13, 59–97.

    Google Scholar 

  • Zillig, W., Palm, P. and Heil, A. (1976) ‘Function and reassembly of subunits of DNA-dependent RNA polymerase’, in R. Losick and M. Chamberlin (eds.), RNA Polymerase ( Cold Spring Harbor Laboratory, New York ), pp. 101–125.

    Google Scholar 

The Mechanism of Transcription

  • Adhya, S. and Gottesman, M. (1978) ‘Control of transcription termination’, Ann. Rev. Biochem., 47, 967–996.

    Article  Google Scholar 

  • Chamberlin, M.J. (1976) ‘The selectivity of transcription’, Ann. Rev. Biochem., 43, 721–775.

    Article  Google Scholar 

  • Doi, R.H. (1977) ‘Role of ribonucleic acid polymerase in gene selection in prokaryotes’, Bacteriol. Rev., 41, 568–594.

    Google Scholar 

  • Pribnow, D. (1979) ‘Genetic control signals in DNA’, in R.F. Goldberger (ed.), Biological Regulation and Development I: Gene Expression ( Plenum Press, New York ), pp. 219–277.

    Google Scholar 

  • Rosenberg, M. and Court, D. (1979) ‘Regulatory sequences involved in the promotion and termination of RNA transcription’, Ann. Rev. Genet., 13, 319–353.

    Article  Google Scholar 

  • Siebenlist, S., Simpson, R.B. and Gilbert, W. (1980) ‘E. coli RNA polymerase interacts homologously with two different promoters’, Cell, 20, 269–281.

    Google Scholar 

  • Apirion, D. (1973) ‘Degradation of RNA inEscherichia coli: A hypothesis’, Molec. Gen. Genet., 122, 313–322.

    Article  Google Scholar 

  • Gallant, J.A. (1979) ‘Stringent control in E. coli’, Ann. Rev. Genet., 13, 393–415.

    Google Scholar 

  • MaalOe, O. (1979) ‘Regulation of the protein-synthesising machinery — Ribosomes, tRNA, factors, and soon’, in R.F. Goldberger (ed.)1 Biological Regulation and Development, I: Gene Expression ( Plenum Press, New York ), pp. 487–542.

    Google Scholar 

  • Nierlich, D.P. (1978) ‘Regulation of bacterial growth, RNA and protein synthesis’, Ann. Rev. MicrobioL, 32, 393–432.

    Article  Google Scholar 

  • Perry, R.P. (1976) ‘Processing of RNA’, Ann. Rev. Biochem., 45, 605–629.

    Article  Google Scholar 

  • Goldberg, I.H. and Friedman, P.A. (1971) ‘Antibiotics and nucleic acids’, A nn. Rev. Biochem., 40, 775–810.

    Google Scholar 

  • Kersten, H. and Kersten, W. (1974) Inhibitors of Nucleic Acid Synthesis: Biophysical and Biochemical Aspects ( Springer-Verlag, New York).

    Book  Google Scholar 

  • Sarin, P.S. and Gallo, R.C. (eds.) (1980) Inhibitors of DNA and RNA Polymerases ( Pergamon Press, New York ).

    Google Scholar 

  • Suhadolnik, R.J. (1979) ‘Naturally occurring nucleoside and nucleotide antibiotics’, Prog. NucL Acid. Res. Molec. Biol., 22, 193–291.

    Article  Google Scholar 

  • Werhli, W. (1977) ‘Ansamycins: Chemistry, biosynthesis and biological activity’, Topics Curr. Chem., 72, 21–49.

    Article  Google Scholar 

RNA Translation

  • Chambliss, G., Craven, G.R., Davies, J., Davis, K., Kahan, L. and Nomura, M. (eds.) (1980) Ribosomes: Structure, Function and Genetics ( University Park Press, Baltimore ).

    Google Scholar 

  • Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Mercier, R. (1981) ‘Codon catalog usage is a genome strategy modulated for gene expressivity’, Nucl. Acids Res., 9, r43-r74. (This list is updated periodically.)

    Google Scholar 

  • Jukes, T.H. (1978) ‘The amino acid code’,Adv. Enzymol., 47, 375–432.

    Google Scholar 

  • Umbarger, H.E. (1978) ‘Amino acid biosynthesis and its regulation’,A nn. Rev. Biochem., 47, 533–606.

    Google Scholar 

  • Yeas, M. (1969) The Biological Code ( North-Holland, Amsterdam).

    Google Scholar 

  • Altman, S. (1978) ‘Biosynthesis of tRNA’ in S. Altman (ed.), Transfer RNA ( The MIT Press, Cambridge, MA ), pp. 49–77.

    Google Scholar 

  • Barrell, B.G. and Clark, B.F.C. (1974)Handbook of Nucleic Acid Sequences (Joynson-Bruvvers, Oxford).

    Google Scholar 

  • Celis, J.E. (1980) ‘Collection of mutant tRNA sequences’, Nucl. Acids Res., 8, r23 - r29.

    Article  Google Scholar 

  • Clark, B.F.C. (1979) ‘Structure and function of tRNA’ in J.E. Celis and J.D. Smith (eds.), Nonsense Mutations and tRNA Suppressors ( Academic Press, London ), pp. 1–46.

    Google Scholar 

  • Crick, F.H.C. (1966) ‘Codon-anticodon pairing: The wobble hypothesis’, J. Mol. Biol., 19, 548–555.

    Article  Google Scholar 

  • Feldman, M. Ya. (1978) ‘Minor components in transfer RNA: the location-function relationship’, Prog. Biophys. Molec. BioL, 32, 83–102.

    Article  Google Scholar 

  • Gauss, D.H. and Sprinzl, M. (1981) ‘Compilation of tRNA sequences’, Nucl. Acids Res., 9, rl-r23. (An up-to-date collection of tRNA sequences is published each year by NAR.)

    Google Scholar 

  • Goddard, J.P. (1977) ‘The structures and functions of transfer RNA’, Prog. Biophys. Molec. Biol., 32, 233–308.

    Google Scholar 

  • Kim, S.-H. (1978) ‘Three-dimensional structure of transfer RNA and its functional implications’, in A. Meister (ed.),Advances in Enzymology and Related Areas ofMolecularBiology, 46 ( Wiley, New York ), pp. 279–315.

    Google Scholar 

  • Nishimura, S. (1978) ‘Modified nucleosides and isoaccepting tRNA’, in S. Altman (ed.), Transfer RNA ( The MIT Press, Cambridge, MA ), pp. 168–195.

    Google Scholar 

  • Schimmel, P.R. and Soll, D. (1979) ‘Aminoacyl-tRNA synthetases: General features and recognition of transfer RNAs’, Ann. Rev. Biochem., 48, 601–648.

    Google Scholar 

  • Brimacombe, R., Stöffler, G. and Wittmann, H.G. (1978) ‘Ribosome structure’, Ann. Rev. Biochem., 47, 217–249.

    Article  Google Scholar 

  • Brosius, J., Palmer, M.L., Kennedy, P.J. and Noller, H.F. (1978) ‘Complete nucleotide sequence of a 16S ribosomal gene from Escherichia coli’, Proc. Nat. Acad. Sci. USA, 75, 4801–4805.

    Google Scholar 

  • Brosius, J., Dull, T.J. and Noller, H.F. (1980) ‘Complete nucleotide sequence of a 28S ribosomal RNA gene from Escherichia colis Proc. Nat. Acad. ScL USA, 77, 201–204.

    Google Scholar 

  • Erdman, V.A. (1976) ‘Structure and function of 5S and 5.8S RNA’,Prog. NucL Acid Res. Molec. BioL, 18, 45–90.

    Google Scholar 

  • Feltner, P. (1974) Structure of the 16S and 23S ribosomal RNAs’, in M. Nomura, A. Tissières and P. Lengyel (eds.), Ribosomes ( Cold Spring Harbor Laboratory, New York ), pp. 169–191.

    Google Scholar 

  • Stöffler, G. and Wittmann, H.G. (1977) ‘Primary structure and three-dimensional arrangement of proteins within theEscherichia coli ribosome’, in H. Weissbach and S. Pestka (eds.), Molecular Mechanisms of Protein Biosynthesis ( Academic Press, New York ), pp. 117–202.

    Google Scholar 

The Mechanism of Translation

  • Bermek, E. (1978) ‘Mechanisms in polypeptide chain elongation on ribosomes’, Prog. Nucl. Acid Res. Molec. BioL, 21, 63–100.

    Article  Google Scholar 

  • Caskey, C.T. (1977) ‘Peptide chain termination’, in H. Weissbach and S. Pestka(eds.), Molecular Mechanisms of Protein Biosynthesis ( Academic Press, New York ), pp. 443–465.

    Google Scholar 

  • Grunberg-Manago, M., Buckingham, R.H., Cooperman, B.S. and Hershey, J.W.B. (1978) ‘Structure and function of the translation machinery’, Symp. Soc. Gen. Microbiol., 28, 27–110.

    Google Scholar 

  • Pongs, O. (1978) ‘Transfer RNA function in protein synthesis: Ribosome (A-sites and P-sites) and mRNA interactions’ in S. Altman (ed.), Transfer RNA ( The MIT Press, Cambridge, MA ), pp. 78–104.

    Google Scholar 

  • Steitz, J.A. (1979) ‘Genetic signals and nucleotide sequences in messenger RNA’, in R.F. Goldberger (ed.), Biological Regulation and Development, I: Gene Expression ( Plenum Press, New York ), pp. 349–399.

    Google Scholar 

  • Goldberg, A.L. and Dice, J.F. (1974) ‘Intracellular protein degradation in mammalian and bacterial cells’, Ann. Rev. Biochem., 43, 835–869.

    Article  Google Scholar 

  • Goldberg, A.L. and St. John, A.C. (1976) Intracellular protein degradation in mammalian and bacterial cells: Part 2’, Ann. Rev. Biochem., 45, 747–803.

    Google Scholar 

  • Hershko, A. and Fry, M. (1975) ‘Post-translational cleavage of polypeptide chains: Role in assembly’, Ann. Rev. Biochem., 44, 775–797.

    Article  Google Scholar 

  • Mount, D.W. (1980) ‘The genetics of protein degradation in bacteria’, Ann. Rev. Genet., 14, 279–319.

    Article  Google Scholar 

  • Lodish, H.F. (1976) ‘Translational control of protein synthesis’, Ann. Rev. Biochem., 45, 39–72.

    Article  Google Scholar 

  • Weissman, C. (1974) ‘The making of a phage’, FEBS Letts., 40S, 10–18.

    Article  Google Scholar 

  • Pestka, S. (1977) ‘Inhibitors of protein biosynthesis’, in H. Weissbach and S. Pestka (eds.), Molecular Mechanisms of Protein Biosynthesis ( Academic Press, New York ), pp. 467–553.

    Google Scholar 

  • Suhadolnik, RJ. (1979) ‘Naturally occurring nucleoside and nucleotide antibiotics’, Prog. Nucl. Acid Res. Molec. BioL, 22, 193–291.

    Article  Google Scholar 

  • Vazquez,’ D. (1979) Inhibitors of Protein Biosynthesis ( Springer-Verlag, Berlin).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Robert E. Glass

About this chapter

Cite this chapter

Glass, R.E. (1982). RNA and Protein Production. In: Gene Function. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6689-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6689-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7099-0082-5

  • Online ISBN: 978-1-4684-6689-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics