Advertisement

H2 cycling in N2 fixation: Past, present, and future outlook

  • Daniel J. Arp

Abstract

H2 production by nitrogenase is a major factor limiting the efficiency of biological N2 fixation. This production appears to be an integral part of the reaction mechanism leading to the reduction of N2 (i.e., N2 reduction by nitrogenase cannot occur in the absence of H2 production) and it would appear unlikely that this inefficiency can be improved at the source. The H2 produced by nitrogenase can either be lost to the environment or oxidized by hydrogenase. H2 oxidation typically benefits the system and results in an increased efficiency of N2 fixation. This process of H2 production by nitrogenase followed by H2 oxidation via hydrogenase is referred to as “hydrogen cycling”. The purpose of this chapter is to provide an historical account of the major accomplishments which have led to our current view of H2 cycling in N2 fixing microorganisms. Such an account will also serve to focus attention on the contributions of Dr. Harold Evans and his colleagues during the last 15 years of rapid development in this field.

Keywords

Hydrogenase Activity Soybean Nodule Nitrogen Fixation Research Hydrogenase Expression Lithoautotrophic Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, S.L., Maier, R.J., Hanus, F.J., Russell, S.A., Emerich, D.W. & Evans, H.J. (1979) Science 203, 1255–1257.CrossRefGoogle Scholar
  2. 2.
    Arp, D.J. (1985) Arch. Biochem. Biophys. 237, 504–512.CrossRefGoogle Scholar
  3. 3.
    Arp, D.J. & Burris, R.H. (1982) Biochim. Biophys. Acta 700, 7–15.CrossRefGoogle Scholar
  4. 4.
    Arp, D.J. & Burris, R.H. (1979) Biochim. Biophys. Acta 570, 221–230.Google Scholar
  5. 5.
    Bedmar, E.J., Edie, S.A. & Phillips, D.A. (1983) Plant Physiol. 72, 1011–1015.CrossRefGoogle Scholar
  6. 6.
    Bedmar, E.J. & Phillips, D.A. (1984) Plant Physiol. 75, 629–633.CrossRefGoogle Scholar
  7. 7.
    Boursier, P., Hanus, F.J., Papen, H., Becker, M.M., Russell, S.A. & Evans, H.J. (1988) J. Bacteriol. 170, 5594–5600.Google Scholar
  8. 8.
    Burgess, B.K., Wherland, S., Stiefel, E.L. & Newton, W.E. (1980) in Molydenum Chem. Biol. Significance, ed. Newton, W.E. & Otsuka, S. (Plenum, New York) pp. 37–84.Google Scholar
  9. 9.
    Cantrell, M.A., Haugland, R.A. & Evans, H.J. (1983) Proc. Natl. Acad. Sci. USA 80, 181–185.CrossRefGoogle Scholar
  10. 10.
    Dixon, R.O.D. (1967) Annals Botany, N.S. 31, 179–188.Google Scholar
  11. 11.
    Dixon, R.O.D. (1968) Arch. Mikrobiol. 62, 272–283.CrossRefGoogle Scholar
  12. 12.
    Dixon, R.O.D. (1972) Arch. Mikrobiol. 85, 193–201.CrossRefGoogle Scholar
  13. 13.
    Eisbrenner, G. & Evans, H.J. (1982) Plant Physiol. 70, 1667–1672.CrossRefGoogle Scholar
  14. 14.
    Emerich, D.W., Ruiz-Arqueso, T., Ching, T.M. & Evans, H.J. (1979) J. Bacteriol. 137, 153–160.Google Scholar
  15. 15.
    Emerich, D.W., Ruiz-Argueso, T., Russell, S.A. & Evans, H.J. (1980) Plant Physiol. 66, 1061–1066.CrossRefGoogle Scholar
  16. 16.
    Evans, H.J., Hanus, F.J., Haugland, R.A., Cantrell, M.A., Xu, L.-S., Russell, S.A., Lambert, G.R. & Harker, A.R. (1985) in World Soybean Research Conference III: Proceedings, ed. Shibles, R. (Westview Press, London) pp. 935–942.Google Scholar
  17. 17.
    Evans, H.J., Harker, A.R., Papen, H., Russell, S.A., Hanus, F.J. & Zuber, M. (1987) Ann. Rev. Microbiol. 41, 335–361.CrossRefGoogle Scholar
  18. 18.
    Friedrich, B., Heine, E., Finck, A., & Friedrich, C.G. (1981) J. Bacteriol. 145, 1144–1149.Google Scholar
  19. 19.
    Friedrich, C.G., Schneider, K. & Friedrich, B. (1982) J. Bacteriol. 152, 42–48.Google Scholar
  20. 20.
    Graf, E.-G. & Thauer, R.K. (1981) FEBS Lett. 136, 165–169.CrossRefGoogle Scholar
  21. 21.
    Hanus, F.J., Maier, R.J. & Evans, H.J. (1979) Proc. Natl. Acad. Sci. USA 76, 1788–1792.CrossRefGoogle Scholar
  22. 22.
    Harker, A. R., Xu, L.-S., Hanus, F.J. & Evans, H.J. (1984) J. Bacteriol. 159, 850–856.Google Scholar
  23. 23.
    Haugland, R.A., Cantrell, M.A., Beaty, J.S., Hanus, F.J., Russell, S.A. & Evans, H.J. (1984) J. Bacteriol. 159, 1006–1012.Google Scholar
  24. 24.
    Hausinger, R.P. (1987) Microbiol. Reviews 51, 22–42.Google Scholar
  25. 25.
    Hoch, G.E., Schneider, K.C. & Burris, R.H. (1960) Biochim. Biophys. Acta 37, 273–279.CrossRefGoogle Scholar
  26. 26.
    Hunt, S., Gaito, S.T. & Layzell, D.B. (1988) Planta 173, 128–141.CrossRefGoogle Scholar
  27. 27.
    Klucas, R.V., Hanus, F.J., Russell, S.A. & Evans, H.J. (1983) Proc. Natl. Acad. Sci. USA 80, 378–382.CrossRefGoogle Scholar
  28. 28.
    Lambert, G.R., Cantrell, M.A., Hanus, F.J., Russell, S.A., Haddad, K.R. & Evans, H.J. (1985) Proc. Natl. Acad. Sci. USA 82, 3232–3236.CrossRefGoogle Scholar
  29. 29.
    Lambert, G.R., Harker, A.R., Cantrell, M.A., Hanus, F.J., Russell, S.A., Haugland, R.A. & Evans, H.J. (1987) Appl. Environ. Microbiol. 53, 422–428.Google Scholar
  30. 30.
    Maier, R.J., Campbell, N.E.R., Hanus, F.J., Simpson, F.B., Russell, S.A. & Evans, H.J. (1978) Proc. Natl. Acad. Sci. USA 75, 3258–3262.CrossRefGoogle Scholar
  31. 31.
    Maier, R.J., Postgate, J.R. & Evans, H.J. (1978) Nature 276, 494–495.CrossRefGoogle Scholar
  32. 32.
    O’Brian, M.R. & Maier, R.J. (1989) Biochim. Biophys. Acta 974, 229–246.CrossRefGoogle Scholar
  33. 33.
    Phelps, A.S. & Wilson, P.W. (1941) Soc. Exp. Biol. Med. 47, 473–476.Google Scholar
  34. 34.
    Rasche, M.E. & Arp, D.J. (1989) Plant Physiol. 91, 663–668.CrossRefGoogle Scholar
  35. 35.
    Rivera-Ortiz, J.M. & Burris, R.H. (1975) J. Bacteriol. 123, 537–545.Google Scholar
  36. 36.
    Ruiz-Argueso, T., Hanus, J. & Evans, H.J. (1978) Arch. Microbiol. 116, 113–118.CrossRefGoogle Scholar
  37. 37.
    Sayavedra-Soto, L.A., Powell, G.K., Evans, H.J. & Morris, R.O. (1988) Proc. Natl. Acad. Sci. USA 85, 8395–8399.CrossRefGoogle Scholar
  38. 38.
    Schubert, K.R. & Evans, H.J. (1976) Proc. Nat. Acad. Sci. USA 73, 1207–1211.CrossRefGoogle Scholar
  39. 39.
    Simpson, F.B., Maier, R.J. & Evans, H.J. (1979) Arch. Microbiol. 123, 1–8.CrossRefGoogle Scholar
  40. 40.
    Simpson, F.B. & Burris, R.H. (1984) Science 224, 1095–1097.CrossRefGoogle Scholar
  41. 41.
    Stephenson, M. & Stickland, L.H. (1931) Biochem. J. 25, 205–215.Google Scholar
  42. 42.
    Stults, L.W., Moshiri, F. & Maier, R.J. (1986) J. Bacteriol. 166, 795–800.Google Scholar
  43. 43.
    Stults, L.W., O’Hara, E.B., & Maier, R.J. (1984) J. Bacteriol. 159, 153–158.Google Scholar
  44. 44.
    Wilson, P.W. & Umbreit, W.W. (1937) Arch. Mikrobiol. 8, 440–457.CrossRefGoogle Scholar
  45. 45.
    Yates, M.G. & Campbell, F.O. (1989) J. Gen. Microbiol. 135, 221–226.Google Scholar
  46. 46.
    Zuber, M., Harker, A.R., Sultana, M.A. & Evans, H.J. (1986) Proc. Natl. Acad. Sei. USA 83, 7668–7672.CrossRefGoogle Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Daniel J. Arp
    • 1
  1. 1.Laboratory for Nitrogen Fixation ResearchOregon State UniversityCorvallisUSA

Personalised recommendations