Skip to main content

Physiological, metabolic and developmental implications of O2 regulation in legume nodules

  • Chapter
Nitrogen Fixation

Abstract

The fixation of atmospheric N2 by the bacterial enzyme nitrogenase is energetically expensive, requiring at least 16 ATP per N2 fixed. The ATP is derived from oxidative phosphorylation, so a high flux of O2 is required to the bacteria. However, nitrogenase is irreversibly inhibited by O2, so the O2 concentration at the site of the enzyme must be regulated stringently (3). In legume nodules, the infected cells housing the nitrogenase-containing bacteroids occupy a distinct central zone surrounded by inner and outer cortical layers. The O2 concentration in this central zone is maintained at a low level by the high rate of respiration in support of nitrogenase activity and by a barrier to O2 diffusion in the inner cortex (27, 49 58). Recent studies have shown that the cortical diffusion barrier has a variable resistance and that it maintains the O2 concentration in the infected cells at a level which limits nitrogenase activity at all times (20, 28). The barrier also responds to changes in physiological and environmental conditions which affect nodule metabolism and therefore the ability of the nodule to consume the O2 that diffuses into the central zone from the rhizosphere (27, 58).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Atkins, C.A., Sanford, P.J., Storer, P.J. & Pate, J.S. (1988) Plant Fhysiol. 88, 1229–1234.

    Article  Google Scholar 

  2. Anthon, G.E. & Qnerich, D.W. (1990) Plant Fhysiol. 92, 346–351.

    Article  Google Scholar 

  3. Bergersen, F.J. (1982) Root nodules of legumes; Structure and functions. (Research Studies Press, Chichester, U.K.).

    Google Scholar 

  4. Bergersen, F.J. & Turner, G.L. (1990) Proc. R. Soc. Lond. B 238, 295–320.

    Article  Google Scholar 

  5. Dakora, F.D. (1989) Ph.D. Thesis, University of W. Australia.

    Google Scholar 

  6. Davey, A.G. & Simpson, R.J. (1989) J. Exp. Bot. 40, 149–158.

    Article  Google Scholar 

  7. David, M., Daveran, M., Batut, J., Dedieu, A., Domergue, O., Ghai, J., Hertig, C., Boistard, P. & Kahn, D. (1988) Cell 54: 671–683

    Article  Google Scholar 

  8. Day, D.A. Price, G.D. & Udvardi, M.K. (1989) Aust. J. Plant Physiol. 16: 69–84.

    Article  Google Scholar 

  9. Diaz del Castillo, L., Hunt, S. & Layzell, D.B. (1990) Abstract in this volume.

    Google Scholar 

  10. Dixon, R.O.D., Blunden, E.A.G. & Searl, J.W. (1981) Plant Sci. Lett. 23, 109–116.

    Article  Google Scholar 

  11. Denison, R.F. & Layzell, D.B. (1990) Abstract in this volume.

    Google Scholar 

  12. Edie, S.A. & Phillips, D.A. (1983) Plant Physiol. 72, 156–160.

    Article  Google Scholar 

  13. Fernando, S.M., Hunt, S., Smith, R. Turpin, D.H., Atkins, C.A. & Layzell, D.B. (1990) Abstract in this volume.

    Google Scholar 

  14. Fellows, R.J., Patterson, R.P., Raper, C.D., Harris, D. (1987) Plant Physiol 84: 456–460.

    Article  Google Scholar 

  15. Hageman, R.V. & Burris, R.H. (1980) Biochim. Biophys. Acta 541, 63–75.

    Google Scholar 

  16. Hartwig, U., Boller, B.C., Baur-Hoch, B. and Nosberger, J. (1990) Ann. Bot. 65, 97–105.

    Google Scholar 

  17. Hunbeck, C. & Werner, D. (1987) Endocyt. C. Res. 4, 185–196.

    Google Scholar 

  18. Hunt, S., Gaito, S.T. & Layzell, D.B. (1988) Planta 173, 128–141.

    Article  Google Scholar 

  19. Hunt, S., King, B.J., Canvin, D.T. & Layzell, D.B. (1987) Plant Physiol. 84, 164–172.

    Article  Google Scholar 

  20. Hunt, S., King, B.J. & Layzell, D.B. (1989) Plant Physiol. 91, 315–321.

    Article  Google Scholar 

  21. Hunt, S., King, B.J., Denison, R.F., Kouchi, H. Tajima, S. & Layzell, D.B. (1990) Abstract in this volume.

    Google Scholar 

  22. King, B.J., Hunt, S., Weagle, G.E., Walsh, K.B., Pottier, R.H., Canvin, D.T. & Layzell, D.B. (1988) Plant Physiol. 87, 296–299.

    Article  Google Scholar 

  23. King, B.J., Layzell, D.B. & Canvin, D.T. (1986) Plant Physiol. 81, 200–205.

    Article  Google Scholar 

  24. Knight, T.J. & Langston-Unkefer, P.J. (1988) Science 241: 951–954

    Article  Google Scholar 

  25. Kullik, I., Hennecke, H. & Fischer, H-M. (1989) Arch. Microbiol. 151, 191–197.

    Article  Google Scholar 

  26. Layzell, D.B., Gaito, S.T. & Hunt, S. (1988) Planta 173, 117–127.

    Article  Google Scholar 

  27. Layzell, D.B. & Hunt, S. (1990) Physiol. Plant. (in press)

    Google Scholar 

  28. Layzell, D.B., Hunt, S. & Palmer, G.R. (1990) Plant Physiol. 92, 1101–1107.

    Article  Google Scholar 

  29. Lin, J., Walsh, K.B., Canvin, D.T. & Layzell, D.B. (1988) Can. J. Bot. 66, 526–534.

    Article  Google Scholar 

  30. McDermott, T.R., Griffith, S.M., Vance, C.P. & Graham, P.H. (1989) FEMS Microbiol. Reviews 63, 327–340.

    Article  Google Scholar 

  31. Minchin, F.R., Minguez, M.I., Sheehy, J.E., Witty, J.F. & Skot, L. (1986) J. Exp. Bot. 37, 1103–1113.

    Article  Google Scholar 

  32. Minchin, F.R., Sheehy, J.E. & Witty, J.F. (1986) J. Exp. Bot. 37, 1581–1591.

    Article  Google Scholar 

  33. Minchin, F.R., Witty, J.F., Sheehy, J.E. & Muller, M. (1983) J. Exp. Bot. 34, 641–649.

    Article  Google Scholar 

  34. Moloney, A.H., Guy, R., & Layzell, D.B. (1990) Abstract in this volume.

    Google Scholar 

  35. Newcomb, E.H., Kaneko, Y., VandenBosch, K.A. (1989) Protoplasma 150, 150–159.

    Article  Google Scholar 

  36. Pankhurst, C.E. & Sprent, J.I. (1975) Protoplasma 85, 85–98.

    Article  Google Scholar 

  37. Priestley, C.A., Treharne, K.J. & Lenz, F. (1988) Ann. Bot. 61, 159–167.

    Google Scholar 

  38. Ralston, E.J., & Imsande, J. (1982) J. Exp. Bot. 33: 208–214.

    Article  Google Scholar 

  39. Rasche, M.E. & Arp, D.J. (1989) Plant Physiol. 91, 663–668.

    Article  Google Scholar 

  40. Rawsthorne, S. & LaRue, T.A. (1986) Plant Physiol. 81, 1092–1096.

    Article  Google Scholar 

  41. Schuller, K.A., Minchin, F.R. & Gresshoff, P.M. (1988) J. Exp. Bot. 39, 865–877.

    Article  Google Scholar 

  42. Schuller, K.A., Turpin, D.H. and Plaxton, W.C (1990) Abstract in this volume.

    Google Scholar 

  43. Sheehy, J.E. & Bergersen, F.J. (1986) Ann. Bot. 58, 121–136.

    Google Scholar 

  44. Sheehy, J.E., Bergersen, F.J., Minchin, F.R. & Witty, J. (1987) Ann. Bot. 60, 345–351.

    Google Scholar 

  45. Sheehy, J.E., Minchin, F.R. & Witty, J. (1985) Ann. Bot. 55, 549–562.

    Google Scholar 

  46. Sheehy, J.E. & Thomeley, J.H.M. (1988) Ann. Bot. 61, 605–609.

    Google Scholar 

  47. Sinclair, T.R. & Goudriaan, J. (1981) Plant Physiol. 67, 143–145.

    Article  Google Scholar 

  48. Streeter, J. (1987) Plant Physiol. 85, 768–773.

    Article  Google Scholar 

  49. Tjepkema, J.D. & Yocum, C.S. (1974) Planta 119, 351–360.

    Article  Google Scholar 

  50. van de Wiel, C., Scheres, B., Franssen, H., van Lierop, M-J., van Lammeren, A., van Kammen, A., Bisseling, T. (1990) EMBO Journal 9, 1–7.

    Google Scholar 

  51. Vanleberghe, G.C., Horsey, A.K., Weger, H.G. & Turpin, D.H. (1989) Plant Physiol. 91: 1551–1557

    Article  Google Scholar 

  52. Vessey, J.K., Walsh, K.B. & Layzell, D.B. (1988) Physiol. Plant. 73, 113–121.

    Article  Google Scholar 

  53. Vessey, J.K., Walsh, K.B. & Layzell, D.B. (1988) Physiol. Plant. 74, 137–146.

    Article  Google Scholar 

  54. Walsh, K.B., Vessey, J.K., Layzell, D.B. 1987 Plant Fhysiol. 85: 137–144.

    Article  Google Scholar 

  55. Weisz, P.R., Denison, R.F. & Sinclair, T.R. (1985) Plant Physiol. 78, 525–530.

    Article  Google Scholar 

  56. Weisz, P.R. & Sinclair, T.R. (1988) Plant Physiol. 84, 906–910.

    Article  Google Scholar 

  57. Witty, J.F., Minchin, F.R., Sheehy, J.E. & Minguez, M.I. (1984) Ann. Bot. 53, 13–20.

    Google Scholar 

  58. Witty, J.F., Minchin, F.R., Skot, L. & Sheehy, J.E. (1986) Oxford Surveys of Plant Molecular and Cell Biology 3, 275–314.

    Google Scholar 

  59. Witty, J.F., Skot, L. & Rvsbech, N.P. (1987) J. Exp. Bot. 38, 1129–1140.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter M. Gresshoff L. Evans Roth Gary Stacey William E. Newton

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Routledge, Chapman & Hall, Inc.

About this chapter

Cite this chapter

Layzell, D.B., Hunt, S., Moloney, A.H.M., Fernando, S.M., Diaz del Castillo, L. (1990). Physiological, metabolic and developmental implications of O2 regulation in legume nodules. In: Gresshoff, P.M., Roth, L.E., Stacey, G., Newton, W.E. (eds) Nitrogen Fixation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6432-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6432-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6434-4

  • Online ISBN: 978-1-4684-6432-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics