Identification of FeMoco domains within the nitrogenase MoFe protein

  • Dennis R. Dean
  • Deborah J. Scott
  • William E. Newton


During nitrogenase turnover, the Fe protein (a homodimer, Mr ≈ 60,000) sequentially delivers single electrons to the MoFe protein (an α2β2 tetramer, Mr ≈ 220,000) upon which is located the substrate-reduction site (for a review, see Smith et al., this volume). Because the Fe protein is a single electron donor yet multiple electrons are required for substrate reduction, the MoFe protein must be able to accept and store multiple electrons. Very little is known about where and how these electrons are accumulated within the MoFe protein nor is anything known about their intramolecular delivery to the substrate-reduction site. The MoFe protein is known to contain redox centers of two distinct types; two iron-molybdenum cofactors, called FeMoco, and four proposed [4Fe-4S] centers, called P clusters. There is compelling biochemical and genetic evidence that FeMoco is the redox center which is, contains or is part of the substrate-reduction site. In its semi-reduced state, FeMoco exhibits a characteristic S = 3/2 electron paramagnetic resonance (EPR) signal that is unique to metallobiomolecules. This EPR signal can be recognized in whole cells, purified MoFe protein, and in FeMoco extracted from its polypeptide matrix.


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal Domain Versus Domain Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnold, W., Rump, A., Klipp, W., Priefer, U. B. & Puhler, A. (1988) J. Mol. Biol. 203, 715–738.CrossRefGoogle Scholar
  2. 2.
    Brigle, K. E., Weiss, M. C., Newton, W. E. & Dean, D. R. (1987) J. Bacteriol. 169, 1547–1553Google Scholar
  3. 3.
    Dean, D. R., Brigle, K. E., May, H. D. & Newton, W. E. (1988) in Nitrogen Fixation; Hundred Years After, eds. Bothe, de Bruijn & Newton (Gustav Fischer, Stuttgart, New York) pp. 107–113.Google Scholar
  4. 4.
    Dean, D. R., Setterquist, R. A., Brigle, K. E., Scott, D. J., Laird, N. F. & Newton, W. E. (1990) Molec. Microbiol. in Press.Google Scholar
  5. 5.
    Dilworth, M. J., Eady, R. R., Robson, R. L. & Miller, R. W. (1987) Nature 327, 167–168.CrossRefGoogle Scholar
  6. 6.
    Hawkes, T. R., McLean, P. A. & Smith, B. E. (1984) Biochem. J. 217, 317–321.Google Scholar
  7. 7.
    Hoover, T. R., Imperial, J., Ludden, P. W. & Shah, V. K. (1989) Biochemistry 28, 2768–2771.CrossRefGoogle Scholar
  8. 8.
    Kent, H. M., Baines, M., Gormal, C., Smith, B. E. & Buck, M. (1990) Molec. Microbiol. in Press.Google Scholar
  9. 9.
    Kent, H. M., Ioannidis, I., Gormal, C., Smith, B. E. & Buck, M. (1989) Biochem. J. 264, 257–264.Google Scholar
  10. 10.
    McLean, P. A., Smith, B. E. & Dixon, R. A. (1983) Biochem. J. 211, 589–597.Google Scholar
  11. 11.
    Morgan, T. V., Mortenson, L. E., McDonald, J. W. & Watt, G. D. (1988) J. Inorg. Biochem. 33, 111–120.CrossRefGoogle Scholar
  12. 12.
    Paustian, T. D., Shah, V. K. & Roberts, G. P. (1989) Proc. Natl. Acad. Sci. USA 86, 6082–6086.CrossRefGoogle Scholar
  13. 13.
    Scott, D. J., May, H. D., Newton, W. E., Brigle, K. E. & Dean, D. R. (1990) Nature 343, 188–190.CrossRefGoogle Scholar
  14. 14.
    Ugalde, R. A., Imperial, J., Shah, V. K. & Brill, W. J. (1984) J. Bacteriol. 159, 888–893.Google Scholar

Copyright information

© Routledge, Chapman & Hall, Inc. 1990

Authors and Affiliations

  • Dennis R. Dean
    • 1
  • Deborah J. Scott
    • 1
  • William E. Newton
    • 1
  1. 1.Departments of Anaerobic Microbiology and BiochemistryThe Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations