Skip to main content

Measurement of ATP Turnover during Shortening and Lengthening of Rabbit Psoas Myofibrils Using a Fluorescent ATP analog

  • Chapter
Mechanisms of Work Production and Work Absorption in Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 453))

Abstract

In order to study ATP turnover during shortening and lengthening of rabbit psoas myofibrils, we have used fluorescence microscopy in which the displacement of a fluorescent nucleotide analog, 2’(3’)-0-[N-[2-[[Cy3] amido] ethyl] carbamoyl]-adenosine 5′ triphosphate (Cy3-EDA-ATP) bound to cross-bridge on flash photolysis of caged ATP was measured [Chaen et al. (1997) Biophys. J. 73, 2033–2042]1. In the previous paper1, we reported that when a myofibril was imposed to shorten with a constant velocity by a piezoelectric actuator, the nucleotide displacement rate constant initially increased to 0.7 s-1 with increasing shortening velocity and then declined with a further increase in shortening velocity. The rate constant during lengthening measured in the present experiment was found to be not significantly affected. These results suggest that the cross-bridge kinetics show a asymmetrical depenence on the mechanical strain in the cross-bridges, namely, the rate constants are not significantly affected at higher strain during lengthening but depend on the lower strain during shortening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chaen, S., Shirakawa, I., Bagshaw, C. R., and Sugi, H. Biophys. J. 73, 2033–2042 (1997).

    Article  PubMed  CAS  Google Scholar 

  2. Fenn, W. O. J. Physiol. 58, 175–203 (1923).

    PubMed  CAS  Google Scholar 

  3. Fenn, W. O. J. Physiol. 58, 373–395 (1924).

    PubMed  CAS  Google Scholar 

  4. Kushmerick, M. J., and Davies, R. E. Proc. R. Soc. Lond. B Biol. Sci. 174, 315–353 (1969).

    Article  PubMed  CAS  Google Scholar 

  5. Huxley, A. F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).

    PubMed  CAS  Google Scholar 

  6. Anazawa, T., Yasuda, K., and Ishiwata, S. Biophys. J. 61, 1099–1108 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. Conibear, P. B., and Bagshaw, C. R. FEBS Lett. 380, 13–16 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A. H. and Yanagida, T. Biochem. Biophys. Res. Comm 235, 47–53 (1997).

    Article  PubMed  CAS  Google Scholar 

  9. Oiwa, K., Anson, M., Yamada, A., Eccleston, J. F., Corrie, J. E. T., Ferenczi, M. A., Trentham, D. R., and Nakayama, H. Biophys. J. 70, A159 (1996).

    Google Scholar 

  10. Conibear, R B., Jeffreys, D. S., Seehra, C. K., Eaton, R. J., and Bagshaw, C. R. Biochemistry 35, 2299–2308 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. Sowerby, A. J., Seehra, C. K., Lee, M., and Bagshaw, C. R. J. Mol. Biol. 243, 114–123 (1993).

    Article  Google Scholar 

  12. Bagshaw, C. R. (1998) Use of fluorescent nucleotides, in Current methods in muscle physiology: advantages, problems and limitations (ed. H. Sugi). Oxford University Press. Chapter 1.4.

    Google Scholar 

  13. Eccleston, J. F., Oiwa, K., Ferenczi, M. A., Anson, M., Corrie, J. E. T., Yamada, A., Nakayama, H., and Trentham, D. R. Biophys. J. 70, A159 (1996).

    Google Scholar 

  14. Thirwell, H., Sleep, J. A., and Ferenczi, M. A. J. Muscle Res. Cell Motil., 16, 131–137 (1995).

    Article  Google Scholar 

  15. Cooke, R., Franks, K., Luciani, G. B., and Pate, E. J.Physiol. 398, 77–97 (1988).

    Google Scholar 

  16. Rall, J. A., Homsher, E., Wallner, A., and Mommaerts, W. F. H. M. J. Gen. Physiol. 68, 13–27 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. Homsher, E., Irving, M. and Wallner, A. J. Physiol. 321, 423–436 (1981).

    PubMed  CAS  Google Scholar 

  18. Curtin, N. A. and Davies, R. E. J. Mechanochem. Cell Motility 3, 147–154 (1975).

    CAS  Google Scholar 

  19. Katz, B. J. Physiol. 96, 45–64 (1939).

    PubMed  CAS  Google Scholar 

  20. Abbott, B. C. and Aubert, X. M. J. Physiol. 117, 77–86 (1952).

    PubMed  CAS  Google Scholar 

  21. Sugi, H. J. Physiol. 225, 237–253 (1972).

    PubMed  CAS  Google Scholar 

  22. Homsher, E., Lacktis, J., and Régnier, M. Biophys. J. 72, 1780–1791 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Chaen, S., Shirakawa, I., Bagshaw, C.R., Sugi, H. (1998). Measurement of ATP Turnover during Shortening and Lengthening of Rabbit Psoas Myofibrils Using a Fluorescent ATP analog. In: Sugi, H., Pollack, G.H. (eds) Mechanisms of Work Production and Work Absorption in Muscle. Advances in Experimental Medicine and Biology, vol 453. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6039-1_62

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6039-1_62

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6041-4

  • Online ISBN: 978-1-4684-6039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics