Bidirectional Functional Communication between Myosin Subfragments 1 and 2 in Skeletal Muscle Fibers

  • Takakazu Kobayashi
  • Shoichi Kosuge
  • Haruo Sugi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)


It has been shown that polyclonal antibody directed against myosin subfragment 2 (S-2) eliminates Ca2+-activated isometric force development in glycerinated skeletal muscle fibers while Mg-ATPase activity of the fibers remains unchanged. To further explore possible involvement of myosin S-2 in muscle contraction, we studied the effect of anti-S-2 antibody on rigor linkage formation in the fibers, and found that the antibody inhibited development of rigor force in a dose-and time-dependent manner without changing the relation between muscle fiber stiffness and force. If, however, the antibody was applied after development of rigor force, it had no effect on both the stiffness and force. These results strongly suggest bidirectional functional communication between myosin subfragments 1 and 2 in the fibers.


Isometric Force Skeletal Muscle Fiber Sarcomere Length Myosin Head Rigor Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huxley, A.F. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957).PubMedGoogle Scholar
  2. 2.
    Harrington, W.F. Proc. Natl. Acad. Sci. USA 68, 685–689 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    Ueno, H. & Harrington, W.F. J. Mol. Biol. 190, 69–82 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    Ueno, H. & Harrington, W.F. Biochemistry 26, 3589–3596 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    Lovell, S., Karr, T. & Harrington, W.F. Proc. Natl. Acad. Sci. USA 85, 1849–1853 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    Harrington, W.F., Karr, T., Busa, W.B. & Lovell, S.J. Proc. Natl. Acad. Sci. USA 87, 7453–7456 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    Sugi, H., Kobayashi, T., Gross, T., Noguchi, K., Karr, T. & Harrington, W.F. Proc. Natl. Acad. Sci. USA 89, 6134–6137 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    Kobayashi, T., Kosuge, S., Karr, T. & Sugi, H. submittedGoogle Scholar
  9. 9.
    Goldman, Y.E. & Simmons, R.M. J. Physiol. 269, 55–57P (1977)Google Scholar
  10. 10.
    Suzuki, S. & Sugi, H. J. Gen. Physiol. 81, 531–546 (1983).PubMedCrossRefGoogle Scholar
  11. 11.
    Hynes, T.R., Block, S.M., White, BT. & Spudich J.A. Cell 48, 953–963 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    Tsuchiya, T., Inoue, J., Tanaka, H., Wada, H. & Sugi, H. J. Muscle Res. Cell Motil. 15, 356 (1994).Google Scholar
  13. 13.
    Takahashi, I., Oiwa, K., Kawakami, T. Tanaka, H. & Sugi, H. J. Electron Microsc. 42, 334–337 (1993).Google Scholar
  14. 14.
    Ganguly, C., Baines, I.C., Korn, E.D. & Sellers, J. J. Biol. Chem. 267, 20900–20904 (1992).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Takakazu Kobayashi
    • 1
  • Shoichi Kosuge
    • 1
  • Haruo Sugi
    • 1
  1. 1.Department of Physiology School of MedicineTeikyo UniversityItabashi-ku, TokyoJapan

Personalised recommendations