Contractile Properties of Thin (Actin) Filament-Reconstituted Muscle Fibers

  • Shin’ichi IshiwataEmail author
  • Takashi Funatsu
  • Hideaki Fujita
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)


Selective removal and reconstitution of the components of muscle fibers (fibrils) is a useful means of examining the molecular mechanism underlying the formation of the contractile apparatus. In addition, this approach is powerful for examining the structure-function relationship of a specific component of the contractile system. In previous studies, we have achieved the partial structural and functional reconstitution of thin filaments in the skeletal contractile apparatus and full reconstitution in the cardiac contractile apparatus. First, all thin filaments other than short fragments at the Z line were removed by treatment with plasma gelsolin, an actin filament-severing protein. Under these conditions, no active tension could be generated. By incorporating exogenous actin into these thin filament-free fibers, actin filaments were reconstituted by polymerization on the short actin fragments remaining at the Z line, and active tension, which was insensitive to Ca2+, was restored. The active tension after the reconstitution of thin filaments reached as high as 30% of the original level in skeletal muscle, while it reached 140% in cardiac muscle. The augmentation of tension in cardiac muscle is mainly attributable to the elongation of reconstituted filaments, longer than the average length of thin filaments in an intact muscle. These results indicate that a muscle contractile apparatus with a high order structure and function can be constructed by the self-assembly of constituent proteins. Recently, we applied this reconstitution system to the study of the mechanism of spontaneous oscillatory contraction (SPOC) in thin (actin) filament-reconstituted cardiac muscle fibers. As a result, we found that SPOC occurs even in regulatory protein-free actin filament-reconstituted fibers (Fujita & Ishiwata, manuscript submitted), although the SPOC conditions were slightly different from the standard SPOC conditions. This result strongly suggests that spontaneous oscillation is intrinsic to actomyosin motors. We here summarize the contractile properties of the reconstitution system.


Actin Filament Cardiac Muscle Thin Filament Thick Filament Contractile Apparatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ishiwata, S. J. Biochem. 89, 1647–1650 (1981).PubMedGoogle Scholar
  2. 2.
    Tawada, K., Yoshida, A. & Morita, K. J. Biochem. 80, 121–127 (1976).PubMedGoogle Scholar
  3. 3.
    Ishiwata, S., Muramatsu, K. & Higuchi, H. Biophys. J. 47, 257–266 (1985).PubMedCrossRefGoogle Scholar
  4. 4.
    Ishiwata, S. & Okamura, N. Biophys. J. 56, 1113–1120 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    Ishiwata, S., Funatsu, T. & Asami, Y. Proc. 6th Taniguchi International Symposium on Biophysics (ed. S. Ishiwata) pp. 262–293, Taniguchi Foundation (1980).Google Scholar
  6. 6.
    Funatsu, T., Higuchi, H. & Ishiwata, S. J. Cell Biol. 110, 53–62 (1990).PubMedCrossRefGoogle Scholar
  7. 7.
    Yasuda, K., Anazawa, T. & Ishiwata, S. Biophys. J. 68, 598–608 (1995)PubMedCrossRefGoogle Scholar
  8. 8.
    Funatsu, T., Kono, E., Higuchi, H., Kimura, S., Ishiwata, S., Yoshioka, T., Maruyama, K. & Tsukita, S. J. Cell Biol. 120, 711–724 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    Funatsu, T., Anazawa, T. & Ishiwata, S. J. Muscle Res. Cell Motil. 15, 158–171 (1994).PubMedCrossRefGoogle Scholar
  10. 10.
    Fujita, H., Yasuda, K., Niitsu, S., Funatsu, T. & Ishiwata, S. Biophys. J. 71, 2307–2318 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    Kondo, H. & Ishiwata, S. J. Biochem. 79, 159–171 (1976).PubMedGoogle Scholar
  12. 12.
    Ishiwata, S. & Funatsu, T. J. Cell Biol. 100, 282–291 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    Funatsu, T., Asami, Y. & Ishiwata, S. J. Biochem. 103, 61–71 (1988).PubMedGoogle Scholar
  14. 14.
    Fowler, V.M. J. Biol. Chem. 262, 12792–12800 (1987).PubMedGoogle Scholar
  15. 15.
    Casella, J.F., Craig, S.W., Maack, D.J. & Brown, A.E. J. Cell Biol. 105, 371–379 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    Yamaguchi, M, Izumimoto, M., Robson, R.M. & Stromer, M.H. J. Mol. Biol. 184, 621–644 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    Yasuda, K., Fujita, H., Fujiki, Y. & Ishiwata, S. Proc. Jpn. Acad. 70, Ser. B., 151–156 (1994).CrossRefGoogle Scholar
  18. 18.
    Ishiwata, S. & Yasuda, K. Phase Transi. 45, 105–136 (1993).CrossRefGoogle Scholar
  19. 19.
    Fukuda, N., Fujita, H., Fujita, T. & Ishiwata, S. Pflug. Arch. 433, 1–8 (1996).CrossRefGoogle Scholar
  20. 20.
    Ishiwata, S., Anazawa, T., Fujita, T., Fukuda, N., Shimizu, H. & Yasuda, K. in Mechanism of Myofilament Sliding in Muscle Contraction (eds. Sugi, H. & Pollack, G.H.) 545–556 (Plenum Press, New York, 1993).CrossRefGoogle Scholar
  21. 21.
    Fukuda, N. Master’s Degree, School of Science & Engineering, Waseda Univ. (1993).Google Scholar
  22. 22.
    Robinson, T.F. & Winegrad, S. Nature 267, 74–75 (1977).PubMedCrossRefGoogle Scholar
  23. 23.
    Wang, K. & Wright, J.J. Cell Biol. 107, 2199–2212 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    Moncman, C.L. & Wang, K. Cell Motil. Cytoskeleton. 32, 205–225 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    Maruyama, K., Yoshioka, T., Higuchi, H., Ohashi, K., Kimura, S. & Natori, R. J. Cell Biol. 101, 2167–2172 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    Wang, K. in Cell and Muscle Motility. Vol. 6 (ed. Shay, J.W.) 315–369 (Plenum Publishing Co., New York, 1985).Google Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Shin’ichi Ishiwata
    • 1
    • 2
    • 3
    • 4
    Email author
  • Takashi Funatsu
    • 1
    • 3
  • Hideaki Fujita
    • 1
  1. 1.Department of PhysicsSchool of Science and EngineeringJapan
  2. 2.Advanced Research Institute for Science and EngineeringJapan
  3. 3.Materials Research Laboratory for Bioscience and PhotonicsWaseda UniversityTokyoJapan
  4. 4.“Genetic Programming” Team 13Core Research for Evolutional Science and Technology (CREST)Japan

Personalised recommendations