Modulatory Effect of MgATP on Smooth Muscle Myosin Phosphatase Activity

  • Yasuo Ogawa
  • Osamu Sato
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 453)


To deepen our understanding of the regulatory mechanism of smooth muscle contraction, we examined properties of smooth muscle myosin phosphatase (SMMP) which was purified from chicken gizzard according to the method of Alessi et al. with slight modifications. The SMMP was a heterotrimer of 130, 37 and 20 kDa subunits as reported. Because the enzymatic activity was strongly dependent on the ionic strength, all experiments were carried out at a constant ionic strength of 0.15 M. The Vmax and Km of the enzyme toward bovine stomach phosphorylated myosin was 25.2 μmol/mg protein/min and 0.45 μM at 25°C, respectively, which implied that the rate of dephosphorylation by SMMP in smooth muscle cells should be comparable to that of phosphorylation by the myosin light chain kinase in the presence of a saturating Ca2+ concentration. ATP dose-de-pendently decreased the SMMP activity to one-fifth. The IC50 for ATP was 0.6 uM in the presence of 5 mM MgCl2, whereas it increased to 10 μM in the absence of Mg2+ with the addition of 1 mM EDTA. ADP, AMP, GTP and ITP showed no or only weak effect. The finding that ATPγS was ineffective indicates that phosphorylation of the 130 kDa subunit cannot be the underlying mechanism. This modulation was observed with myosin from bovine stomach, but not from chicken gizzard. The difference in conformation of myosin molecules in the presence of MgATP may be critical in its modulatory effect.


Myosin Light Chain Myosin Light Chain Kinase Constant Ionic Strength Myosin Molecule Myosin Phosphatase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hartshorne, D.J. in Physiology of the Gastrointestinal Tract (ed. Johnson, L.R.) 423–482 (Raven Press, New York, 1987).Google Scholar
  2. 2.
    Somlyo, A.P. & Somlyo, A.V. Nature 372, 231–236 (1994).PubMedCrossRefGoogle Scholar
  3. 3.
    Stull, J.T., Krueger, J.K., Kamm, K.E., Gao, Z.-H., Zhi, G. & Padre, R. in Biochemistry of Smooth Muscle Contraction (ed. Bárány, M.) 119–130 (Academic Press, San Diego, 1996).CrossRefGoogle Scholar
  4. 4.
    Bárány, M. & Bárány, K. in Biochemistry of Smooth Muscle Contraction (ed. Bárány, M.) 321–339 (Academic Press, San Diego, 1996).CrossRefGoogle Scholar
  5. 5.
    Erdödi, F., Ito, M. & Hartshorne, D.J. in Biochemistry of Smooth Muscle Contraction (ed. Bárány, M.) 131–142 (Academic Press, San Diego, 1996).CrossRefGoogle Scholar
  6. 6.
    Alessi, D., MacDougall, L.D., Sola, M.M., Ikebe, M. & Cohen, P. Eur. J. Biochem. 210, 1023–1035 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    Shimizu, H., Ito, M., Miyahara, M., Ichikawa, K., Okubo, S., Konishi, T., Naka, M., Tanaka, T., Hirano, K., Hartshorne, D.J. & Nakano, T. J. Biol. Chem. 269, 30407–30411 (1994).PubMedGoogle Scholar
  8. 8.
    Shirazi, A., Iizuka, K., Fadden, P., Mosse, C., Somlyo, A.P., Somlyo, A.V. & Haystead, T.A.J. J. Biol. Chem. 269, 31598–31606 (1994).PubMedGoogle Scholar
  9. 9.
    Sasaki, K., Shima, H., Kitagawa, Y., Irino, S., Sugimura, T. & Nagao, M. Jpn. J. Cancer Res. 81, 1272–1280 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    Morimoto, S. & Ogawa, Y Am. J. Physiol. 37, C21–C29 (1995).Google Scholar
  11. 11.
    Sobieszek, A., Borkowski, J. & Bibiychuk, V.S.J. Biol. Chem. 272, 7034–7041 (1997).Google Scholar
  12. 12.
    Ichikawa, K., Hirano, K., Ito, M., Tanaka, J., Nakano, T. & Hartshorne, D.J. Biochemistry 35, 6313–6320 (1996).PubMedCrossRefGoogle Scholar
  13. 13.
    Blumenthal, D.K. & Stull, J.T. Biochemistry 19, 5608–5614 (1980).PubMedCrossRefGoogle Scholar
  14. 14.
    Mrwa, U. & Hartshorne, D.J. Fed. Proc. 39, 1564–1568 (1980).PubMedGoogle Scholar
  15. 15.
    Mitsui, T., Kitazawa, T. & Ikebe, M. J. Biol. Chem. 269, 5842–5848 (1994).PubMedGoogle Scholar
  16. 16.
    Adelstein, R.S. & Klee, C.B. J. Biol. Chem. 256, 7501–7509 (1981).PubMedGoogle Scholar
  17. 17.
    Kamm, K.E. & Stull, J.T. Science 232, 80–82 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    Kamm, K.E. & Stull, J.T. Am. J. Physiol. 249, C238–C247 (1985).PubMedGoogle Scholar
  19. 19.
    Butler, T.M., Siegman, M.J. & Mooers, S.U. Am. J. Physiol. 251, C945–C950 (1986).PubMedGoogle Scholar
  20. 20.
    Driska, S.P., Stein, P.G. & Porter, R. Am. J. Physiol. 256, C315–C321 (1989).PubMedGoogle Scholar
  21. 21.
    Kitazawa, T., Masuo, M. & Somlyo, A.P. Proc. Natl. Acad. Sci. USA 88, 9307–9310 (1991).PubMedCrossRefGoogle Scholar
  22. 22.
    Kwon, S.C. & Murphy, R.A. Biophys. J. 66, A408 (1994).Google Scholar
  23. 23.
    Butler, T.M., Narayan, S.R., Mooers, S.U. & Siegman, M.J. Am. J. Physiol. 267, C1160–C1166 (1994).PubMedGoogle Scholar
  24. 24.
    Hai, C.-M. & Murphy, R.A. Am. J. Physiol. 254, C99–C106 (1988).PubMedGoogle Scholar
  25. 25.
    Trinkle-Mulcahy, L., Ichikawa, K., Hartshorne, D., Siegman, M.J. & Butler, T.M. J. Biol. Chem. 270, 18191–18194 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    Ichikawa, K., Ito, M. & Hartshorne, D.J. J. Biol. Chem. 271, 4733–4740 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1998

Authors and Affiliations

  • Yasuo Ogawa
    • 1
  • Osamu Sato
    • 1
  1. 1.Department of PharmacologyJuntendo University School of MedicineTokyoJapan

Personalised recommendations