Skip to main content

Functional Characterization of Dictyostelium Discoideum Mutant Myosins Equivalent to Human Familial Hypertrophic Cardiomyopathy

  • Chapter
Mechanisms of Work Production and Work Absorption in Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 453))

Abstract

Familial hypertrophic cardiomyopathy(FHC) is caused by missence mutations in β-myosin heavy chain or other various sarcomeric proteins. To elucidate the functional impact of FHC mutations in myosin heavy chain, we generated Dictyostelium discoideum myosin II mutants equivalent to human FHC mutations by site-directed mutagenesis, and characterized their molecular-basis motor function. The current mutants, i.e. R397Q, F506C, G575R, A699R, K703Q and K703W are equivalent to R403Q, F513C, G584R, G716R, R719Q and R719W FHC mutants respectively. We measured the molecular-basis force and the sliding velocity generated by these myosin mutants. The measurement revealed that the A699R, K703Q and K703W myosins exhibited the lowest level of force with their preserved actin-activated MgATPase activity. F506C mutant showed the least impairment of the motile and enzymatic activities. The motor function of R397Q and G575R myosins were classified as intermediate. These results suggest that ELC binding domain might be important for force production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tanigawa, G., et al. Cell 62, 991–998 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. Geisterfer, L.A., et al. Cell 62, 999–1006 (1990).

    Article  Google Scholar 

  3. Seidman, C.E. & Seidman, J.G. Mol. Biol. Med. 8, 159–166 (1991).

    PubMed  CAS  Google Scholar 

  4. Thierfelder, L., et al. Cell 77, 701–712 (1994).

    Article  PubMed  Google Scholar 

  5. Watkins, H., et al. Nat. Genet. 11, 434–437 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Watkins, H., et al. N. Engl. J. Med. 332, 1058–1064 (1995).

    Article  PubMed  CAS  Google Scholar 

  7. Watkins, H., et al. Nat. Genet. 3, 333–337 (1993).

    Article  PubMed  CAS  Google Scholar 

  8. Bonne, G., et al. Nat Genet 11, 438–440 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. Poetter, K., et al. Nature Genet 13, 63–69 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. Rayment, I., Holden, H.M., Sellers, J.R., Fananapazir, L. & Epstein, N.D. Proc. Natl. Acad. Sci. USA 92, 3864–3868 (1995).

    Article  PubMed  CAS  Google Scholar 

  11. Fisher, A.J., et al. Biochemistry 34, 8960–8972 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Kunkel, T.A. Proc. Natl. Acad. Sci. USA 82, 488–492 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Methods Enzymol., 367–382 (1987).

    Google Scholar 

  14. Howard, P.K., Ahern, K.G. & Firtel, R.A. Nucleic. Acids. Res. 16, 2613–2623 (1988).

    Article  PubMed  CAS  Google Scholar 

  15. Manstein, D.J., Titus, M.A., De Lozanne, A. & Spudich, J.A. Embo. J. 8, 923–932 (1989).

    PubMed  CAS  Google Scholar 

  16. Ruppel, K.M., Egelhoff, T.T. & Spudich, J.A. Ann. N. Y. Acad. Sci., 147–155 (1990).

    Google Scholar 

  17. Spudich, J.A. & Watt, S. J. Biol. Chem., 4866–4871 (1971).

    Google Scholar 

  18. Miyata, H., et al. J. Biochem. 115, 644–647 (1994).

    PubMed  CAS  Google Scholar 

  19. Kamimura, S. Appl. Opt. 26, 3425–3434 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. Svoboda, K. & Block, S.M. Proc. Natl. Acad. Sci. USA 91, 11782–11786 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. Kron, S.J. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 83, 6272–6276 (1986).

    Article  PubMed  CAS  Google Scholar 

  22. Kodama, T., Fukui, K. & Kometani, K. J. Biochem.(Tokyo) 99, 1465–1472 (1986).

    CAS  Google Scholar 

  23. Smith, C.A. & Rayment, I. Biochemistry 35, 5404–5417 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. Whittaker, M., et al. Nature 378, 748–753 (1995).

    Article  PubMed  CAS  Google Scholar 

  25. Uyeda, T.Q., Abramson, P.D. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 93, 4459–4464 (1996).

    Article  PubMed  CAS  Google Scholar 

  26. Milligan, R.A. Proc. Natl. Acad. Sci. USA 93, 21–26 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Fujita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Plenum Press, New York

About this chapter

Cite this chapter

Fujita, H., Sugiura, S., Momomura, Si., Sugi, H., Sutoh, K. (1998). Functional Characterization of Dictyostelium Discoideum Mutant Myosins Equivalent to Human Familial Hypertrophic Cardiomyopathy. In: Sugi, H., Pollack, G.H. (eds) Mechanisms of Work Production and Work Absorption in Muscle. Advances in Experimental Medicine and Biology, vol 453. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6039-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6039-1_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6041-4

  • Online ISBN: 978-1-4684-6039-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics