Skip to main content
Book cover

Gastrulation pp 147–168Cite as

Mesoderm Cell Migration in the Xenopus Gastrula

  • Chapter

Part of the book series: Bodega Marine Laboratory Marine Science Series ((BMSS))

Abstract

We analyze the migration of the prospective head mesoderm (HM) across the blastocoel roof (BCR) during gastrulation of the Xenopus embryo. Cell spreading and the concomitant appearance of cytoplasmic lamellae depend on the interaction of HM cells with fibronectin (FN) fibrils, which cover the inner surface of the BCR. Isolated HM cells only extend short-lived filiform protrusions on non-adheasive substrates, but form lamelliform protrusions (usually two lamellae appear simultaneously at opposite ends of a cell) on a FN substrate. Isolated bipolar HM cells move in a step-wise mode of translocation, with in-built changes of the direction of migration. This ineffective mode of migration is altered when HM cells move as part of a larger aggregate, as occurs in the embryo, where the HM forms a coherent cell mass. A Ca++-dependent cell-cell adhesion molecule, U-cadherin, mediates aggregate formation, which is one prerequisite for highly persistent migration. The second requirement is that the mesoderm aggregate moves on a proper substrate. The extracellular matrix of the inner BCR surface can be deposited on a plastic substrate. This conditioned substrate contains directional cues which guide the mesoderm to its target region. The migrating mesoderm becomes visibly polarized on conditioned substrate. Cells appear unipolar and extend protrusions in the direction of migration only, thus underlapping neighboring cells anteriorly. This shingle arrangement of HM cells is also observed in the embryo. We conclude that both cadherin-mediated cell-cell contact and aggregate formation, and a substrate containing guiding cues are required for the unipolar extension of locomotory protrusions, oriented underlapping of neighboring cells, and efficient, persistent, and directional migration of HM cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angres, B., A. Muller, and P. Hausen. 1991. Differential expression of two cadherins in Xenopus laevis. Development. 111:829–844.

    PubMed  CAS  Google Scholar 

  • Boucaut, J.-C. and T. Darribère. 1983a. Fibronectin in early amphibian embryos: Migrating mesodermal cells contact fibronectin established prior to gastrulation. Cell Tissue Res. 234:135–145.

    Article  CAS  Google Scholar 

  • Boucaut, J.-C. and T. Darribère. 1983b. Presence of fibronectin during early embryogenesis in the amphibian Pleurodeles waltlii. Cell Differ. 12:77–83.

    Article  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, H. Boulekbache, and J.-P. Thiery. 1984a. Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. Nature 307:364–367.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, T.J. Poole, H. Aoyama, KM. Yamada, and J.-P. Thiery. 1984b. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99:1822–1830.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, D.-L. Shi, H. Boulekbache, KM. Yamada, and J.-P. Thiery. 1985. Evidence for the role of fibronectin in amphibian gastrulation. J. Embryol.Exp. Morphol. 89 (Suppl.):211–227.

    PubMed  Google Scholar 

  • Boucaut, J.-C, T. Darribdre, D. Shi, J.-F. Riou, K.E. Johnosn, and M. Delarue. 1991. Amphibian Gastrulation: The Molecular Bases of Mesodermal Cell Migration in Urodele Embryos, p. 169–184. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.

    Google Scholar 

  • Carter, S.B. 1965. Principles of cell motility: The direction of cell movement and cancer invasion. Nature 208:1183–1187.

    Article  PubMed  CAS  Google Scholar 

  • Darribère, T., H. Boulekbache, D.-L. Shi, and J.-C Boucaut. 1985. Immunoelectron microscopic study of fibronectin in gastrulating amphibian embryos. Cell TissueRes. 239:75–80.

    Article  Google Scholar 

  • Darribère, T., K Guida, H. Larjava, KE. Johnson, KM. Yamada, J.-P. Thiery, and J.-C Boucaut. 1990. In vivo analyses of integrin Bl subunit function in fibronectin matrix assembly. J. Cell Biol. 110:1813–1823.

    Article  PubMed  Google Scholar 

  • Darribère, T., K.M. Yamada, K.E. Johnson, and J.-C Boucaut. 1988. The 140-kDa fibronectin receptor complex is required for mesodermal cell adhesion during gastrulation in the amphibian Pleurodeles waltlii. Dev. Biol. 126:182–194.

    Article  PubMed  Google Scholar 

  • Dipasquale, A. 1975. Locomotory activity of epithelial cells in culture. Exp. Cell Res. 94:191–215.

    Article  PubMed  CAS  Google Scholar 

  • Horibata, K. and A.W. Harris. 1970. Mouse myelomas and lymphomas in culture. Exp. Cell Res. 60:61–77.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. 1986. The cellular basis of amphibian gastrulation. p. 241–327. In: Developmental Biology: A Comprehensive Synthesis. Vol.2. The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.

    Google Scholar 

  • Keller, R.E., M. Danilchik, R. Gimlich, and J. Shih. 1985. The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89(Suppl): 185–209.

    PubMed  Google Scholar 

  • Keller, R.E. and G.C. Schoenwolf. 1977. An SEM study of cellular morphology, contact and arrangement as related to gastrulation in Xenopus laevis. Wilhelm Roux’s Arch.Dev. Biol. 182:165–186.

    Article  Google Scholar 

  • Keller, R.E. and J. Hardin. 1987. Cell behaviour during active cell rearrangement: Evidence and speculations. J. Cell Sci. Suppl. 8:369–393.

    PubMed  CAS  Google Scholar 

  • Keller, R. and R. Winklbauer. 1990. The role of the extracellular matrix in amphibian gastrulation. Sem. Dev. Bio. 1:25:33.

    Google Scholar 

  • Kolega, J. 1981. The movement of cell clusters in vitro: Morphology and directionality. J. Cell Sci. 49:15–32.

    PubMed  CAS  Google Scholar 

  • König, G. 1988. A method for mounting specimens for scanning electron microscopy. Trends Genet. 4:270.

    PubMed  Google Scholar 

  • König, G. 1990. Untersuchungen zur Determination der planaren Zellpolaritdt in denepidermalen Cilienzellen von Embryonen des südafrikanischen KrallenfroschesXenopus laevis. Thesis, Universität Tübingen.

    Google Scholar 

  • Kubota, H.Y. and A. J. Durston. 1978. Cinematographical study of cell migration in the opened gastrula of Ambystoma mexicanum. J. Embryol. Exp. Morphol. 44:71–80.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. 1975. Studies on the gastrulation of amphibian embryos: Cell movement during gastrulation in Xenopus laevis embryos. Wilhelm Roux’s Arch. Dev. Biol. 178:1–14.

    Article  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1982. Cell locomotion in vitro by Xenopus laevis gastrula mesoderm cells. Cell Motil. 2:149–161.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1983a. Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species. J. Cell Sci. 59:61–70.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1983b. Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells. J. Cell Sci. 59:43–60.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N, M.A. Smolira, and C.C. Wylie. 1985. Fibronectin visualized by scanning electron microscopy immunocytochemistry on the substratum for cell migration in Xenopus laevis. Dev. Biol. 107:264–268.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P.D. and J. Faber. 1967. Normal Table of Xenopus laevis (Daudin). 2nd edition. North-Holland, Amsterdam.

    Google Scholar 

  • Riou, J.-F., D.-L. Shi, M. Chiquet, and J.-C. Boucaut. 1990. Exogenous tenascin inhibits mesodermal cell migration during amphibian gastrulation. Dev. Biol. 137:305–317.

    Article  PubMed  CAS  Google Scholar 

  • Shi, D.-L., T. Darribere, K.E. Johnson, and J.-C. Boucaut. 1989. Initiation of mesodermal cell migration and spreading relative to gastrulation in the urodele amphibian Pleurodeles waltl. Development 105:351–363.

    Google Scholar 

  • Takeichi, M. 1988. The cadherins: Cell-cell adhesion molecules controlling animal morphogenesis. Development 102:639–655.

    PubMed  CAS  Google Scholar 

  • Weiss, P. 1961. Guiding principles in cell locomotion and cell aggregation. Exp. Cell Res. 8 (Suppl.):260–281.

    Article  Google Scholar 

  • Winklbauer, R. 1986. Cell proliferation in the ectoderm of the Xenopus embryo: Development of substratum requirements for cytokinesis. Dev. Biol. 118:70–81.

    Article  PubMed  CAS  Google Scholar 

  • Winklbauer, R. 1988. Differential interaction of Xenopus embryonic cells with fibronectin in vitro. Dev. Biol. 130:175–183.

    Article  PubMed  CAS  Google Scholar 

  • Winklbauer, R. 1990. Mesoderm cell migration during Xenopus gastrulation. Dev. Biol. 142:155–168.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Winklbauer, R., Selchow, A., Nagel, M., Stoltz, C., Angres, B. (1991). Mesoderm Cell Migration in the Xenopus Gastrula. In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics