Skip to main content

Cell Motility, Control and Function of Convergence and Extension during Gastrulation in Xenopus

  • Chapter
Gastrulation

Part of the book series: Bodega Marine Laboratory Marine Science Series ((BMSS))

Abstract

In this paper we will discuss some recent work on the cell motility underlying the convergence and extension movements during gastrulation and neurulation of Xenopus laevis. We will also discuss some of the tissue interactions controlling this motility, and we will refine our previous ideas on how convergence and extension functions in gastrulation of Xenopus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, P. 1965. Fine structure and morphogenetic movements in the gastrula of the tree frog, Hyla regilla. J. Cell Biol. 24:95–116.

    Article  PubMed  CAS  Google Scholar 

  • Bolker, J. 1989. Gastrulation in the white sturgeon, Acipenser transmontanus. Am. Zool. 29:387.

    Google Scholar 

  • Ettensohn, C. 1985. Gastrulation in the sea urchin is accompanied by the rearrangement of invaginating epithelial cells. Dev. Biol. 112:383–390.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J. and R.E. Keller. 1986. Region-specific cell activities in amphibian gastrulation. Annu. Rev. Cell Biol. 2:201–229.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie, J.I. 1983. The distribution of small ions during the early development of Xenopus laevis and Ambystoma mexicanum embryos. J. Physiol. 344:359–377.

    PubMed  CAS  Google Scholar 

  • Hardin, J. 1988. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103:317–324.

    PubMed  CAS  Google Scholar 

  • Hardin, J. 1989. Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation. Dev. Biol. 136:430–445.

    Article  PubMed  CAS  Google Scholar 

  • Hardin, J. and L.Y. Cheng. 1986. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol. 115:490–501.

    Article  Google Scholar 

  • Hardin, J. and R. Keller. 1988. The behavior and function of bottle cells during gastrulation of Xenopus laevis. Development 103:211–230.

    PubMed  CAS  Google Scholar 

  • Holtfreter, J. 1933. Die totale Exogastrulation eine Selbstablosung Ektoderm von Entomesoderm. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 129:669–793.

    Article  Google Scholar 

  • Holtfreter, J. 1939. Gewebeaffinität, ein Mittel der Embryonalen Formbildung. Arch. Exp. Zellforsch. Besonders Gewebezuecht 23:169–209.

    Google Scholar 

  • Holtfreter, J. 1943a. Properties and function of the surface coat in amphibian embryos. J. Exp. Zool. 93:251–323.

    Article  Google Scholar 

  • Holtfreter, J. 1943b. A study of the mechanics of gastrulation. Part I. J. Exp. Zool. 94:261–318.

    Article  Google Scholar 

  • Holtfreter, J. 1944. A study of the mechanics of gastrulation. Part II. J. Exp. Zool. 95:171–212.

    Article  Google Scholar 

  • Ikushima, N. and S. Maruyama. 1971. Structure and developmental tendency of the dorsal marginal zone in the early amphibian gastrula. J. Embryol. Exp. Morphol. 25:263–276.

    PubMed  CAS  Google Scholar 

  • Jacobson, A. and R. Gordon. 1976. Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically, and by computer simulation. J. Exp. Zool. 197:191–246.

    Article  PubMed  CAS  Google Scholar 

  • Kageyama, T. 1982. Cellular basis of epiboly of the enveloping layer in the embryos of the Medaka, Oriyzias latipes. II. Evidence for cell rearrangement. J. Exp. Zool. 219:241–256.

    Article  Google Scholar 

  • Keller, R.E. 1978. Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J. Morphol. 157:223–248.

    Article  Google Scholar 

  • Keller, R.E. 1980. The cellular basis of epiboly: An SEM study of deep cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morphol. 60:201–234.

    PubMed  CAS  Google Scholar 

  • Keller, R.E. 1981. An experimental analysis of the role of bottle cells and the deep marginal zone in gastrulation of Xenopus laevis. J. Exp. Zool. 216:81–101.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. 1984. The cellular basis of gastrulation in Xenopus laevis: Active post-involution convergence and extension by medio-lateral interdigitation. Am. Zool. 24:589–603.

    Google Scholar 

  • Keller, R.E. 1986. The cellular basis of amphibian gastrulation. p. 241–327 In: Developmental Biology: A Comprehensive Synthesis. Vol. 2. The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.

    Google Scholar 

  • Keller, R.E. 1987. Cell rearrangement in morphogenesis. Zool. Sci. 4:763–779.

    Google Scholar 

  • Keller, R.E. 1991. Gastrulation in Xenopus embryos without a blastocoel roof. In preparation.

    Google Scholar 

  • Keller, R., M.S. Cooper, M. Danilchik, P. Tibbetts, and P.A. Wilson. 1989a. Cell intercalation during notochord development in Xenopus laevis. J. Exp. Zool. 251:134–154.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. and M. Danilchik. 1988. Regional expression, pattern and timing of convergence and extension during gastrulation of Xenopus laevis. Development 103:193–210.

    PubMed  CAS  Google Scholar 

  • Keller, R.E., M. Danilchik, R. Gimlich, and J. Shih. 1985a. Convergent extension by cell intercalation during gastrulation of Xenopus laevis. p. 111–141. In: Molecular Determinants of Animal Form. G.M. Edelman (Ed.). Alan R. Liss, New York.

    Google Scholar 

  • Keller, R.E., M. Danilchik, R. Gimlich, and J. Shih. 1985b. The function of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89 (Suppl.): 185–209.

    PubMed  Google Scholar 

  • Keller, R.E. and J. Hardin. 1987. Cell behavior during active cell rearrangement: Evidence and speculation. J. Cell Sci. Suppl. 8:369–393.

    PubMed  CAS  Google Scholar 

  • Keller, R.E. and G. Schoenwolf. 1977. An SEM study of cellular morphology, contact, and arrangement, as related to gastrulation in Xenopus laevis. Wilhelm Roux’s Arch. Dev. Biol. 182:165–182.

    Article  Google Scholar 

  • Keller, R.E., J. Shih, and P.A. Wilson. 1989b. Morphological polarity of intercalating deep mesodermal cells in the organizer of Xenopus laevis gastrulae. p. 840. In: Proceedings of the 47th Annual Meeting of the Electron Microscopy Society of America. San Francisco Press, San Francisco.

    Google Scholar 

  • Keller, R.E. and P. Tibbetts. 1989. Mediolateral cell intercalation is a property of the dorsal, axial mesoderm of Xenopus laevis. Dev. Biol. 131:539–549.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R. and J.P. Trinkaus. 1987. Rearrangement of enveloping layer cells without disruption of the epithelial permeability barrier as a factor in Fundulus epiboly. Dev. Biol. 120:12–24.

    Article  PubMed  CAS  Google Scholar 

  • Kimmel, C, R. Warga, and T. Schilling. 1990. Origin and organization of the zebra fish fate map. Development 108:581–594.

    PubMed  CAS  Google Scholar 

  • Kubota, H. and A. Durston. 1978. Cinematographical study of cell migration in the opened gastrula of Ambystoma mexicanum. J. Embryol. Exp. Morphol. 44:71–80.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. 1975. Studies on the gastrulation of amphibian embryos: Cell movement during gastrulation in Xenopus laevis embryos. Wilhelm Roux’s Arch. Dev. Biol. 78:1–14.

    Article  Google Scholar 

  • Miyamoto, D.M. and R. Crowther. 1985. Formation of the notochord in living ascidian embryos. J. Embryol. Exp. Morphol. 86:1–17.

    PubMed  CAS  Google Scholar 

  • Phillips, H. and G. Davis. 1984. Liquid tissue mechanics in amphibian gastrulation: Germ-layer assembly in Rana pipiens. Am. Zool. 18:81–93.

    Google Scholar 

  • Schechtman, A.M. 1942. The mechanics of amphibian gastrulation. I. Gastrulation-producing interactions between various regions of an anuran egg (Hyla regilia). Univ. Calif Publ. Zool. 51:1–39.

    Google Scholar 

  • Schoenwolf, G.C. Cell Movements in the Epiblast During Gastrulation and Neurulation in Avian Embryos, p. 1–28. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.

    Google Scholar 

  • Schoenwolf, G.C. and I.S. Alvarez. 1989. Roles of neuroepithelial cell rearrangement and division in shaping of the avian neural plate. Development 106:427–439.

    PubMed  CAS  Google Scholar 

  • Shih, J. and R.E. Keller. 1991a. The epithelium of the dorsal marginal zone of Xenopus has organizer activity. Submitted.

    Google Scholar 

  • Shih, J. and R.E. Keller. 1991b. The mechanism of mediolateral intercalation during Xenopus gastrulation: Directed protrusive activity and cell alignment. In preparation.

    Google Scholar 

  • Spemann, H. 1938. Embryonic Development and Induction. Yale University Press, New York.

    Google Scholar 

  • Townes, P. and J. Holtfreter. 1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128:53–120.

    Article  Google Scholar 

  • Vogt, W. 1929. Gestaltanalyse am Amphibienkeim mit Örtlicher Vitalfärbung. II. Teil. Gastrulation und Mesodermbildungbei Urodelen und Anuren. Wilhelm Roux’Arch. Entwicklungsmech. Org. 120:384–706.

    Article  Google Scholar 

  • Waddington, C.H. 1940. Organizers and Genes. Cambridge University Press, Cambridge.

    Google Scholar 

  • Warga, R. and C. Kimmel. 1990. Cell movements during epiboly and gastrulation in zebra fish. Development 108:569–580.

    PubMed  CAS  Google Scholar 

  • Weiliky, M. and G. Oster. 1991. Dynamical Models for Cell Rearrangement During orphogenesis, p. 135–146. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.

    Google Scholar 

  • Wieschaus, E., D. Sweeton, and M. Costa. 1991. Convergence and Extension During Germband Elongation in Drosophila Embryos, p. 213–224. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.

    Google Scholar 

  • Wilson, P.A. 1990. The Development of the Axial Mesoderm in Xenopus laevis. Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Wilson, P.A. and R.E. Keller. 1991. Cell rearrangement during gastrulation of Xenopus: Direct observation of cultured explants. Development. 105:155–166.

    Google Scholar 

  • Wilson, P.A., G. Oster, and R.E. Keller. 1989. Cell rearrangement and segmentation in Xenopus: Direct observation of cultured explants. Development 105:155–166.

    PubMed  CAS  Google Scholar 

  • Winklbauer, R. and R. Keller. 1990. The role of extracellular matrix in amphibian gastrulation. Semin. Dev. Biol. 1:25–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Keller, R., Shih, J., Wilson, P. (1991). Cell Motility, Control and Function of Convergence and Extension during Gastrulation in Xenopus . In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics