Skip to main content

The Arrangement of Early Inductive Signals in Relation to Gastrulation; Results from Frog and Chick

  • Chapter
Gastrulation

Part of the book series: Bodega Marine Laboratory Marine Science Series ((BMSS))

Abstract

Nieuwkoop and his students first showed clearly that specification of presumptive mesodermal territories in the amphibian embryo, and of their overall orientation, takes place by agency of signals deriving from the yolky vegetal zone (Nieuwkoop 1977, review). This process begins during (possibly early) blastula stages, and is progressive so that by onset of gastrulation, when the first movements begin to produce rearrangement in the induced territories, there is a significant geographical pattern and differential time schedule to these movements, as well as a pattern of differentiation capacities in the tissue when cultured in isolation (Keller et al. 1985; Dale and Slack 1987b). This pattern relates to the subsequent axes of organization of the body. Geographical regionalization on a finer scale is most advanced in a relatively narrow (ca. 90°) sector around the future dorsal midline, and is related to deep vs. superficial position within the blastula wall as well as to cells’ distances from initial sources of induction, i.e., to ‘height’ in the marginal zone towards the animal pole. As described by Keller and his associates (op. cit. and Keller 1986; Wilson et al. 1989) the role of this sector in gastrulation and neurulation and its capacities when developing in isolation entitle it to the designation ‘morphogenetic organ’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boucaut, J.C., T. Darribère, H. Boulekbache, and J.-P. Thiery. 1984. Prevention of gastrulation but not neurulation by antibodies to fibronectin in amphibian embryos. Nature 307:364–367.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, J. 1972. Properties of the primary organization field in the embryo of Xenopus laevis. I. Cell autonomy and behavior at the site of the organizer. J. Embryol. Exp. Morphol 28:13–26.

    PubMed  CAS  Google Scholar 

  • Cooke, J. 1983. Evidence for specific feedback signals underlying pattern control during vertebrate embryogenesis. J. Embryol. Exp. Morphol. 76:95–114.

    PubMed  CAS  Google Scholar 

  • Cooke, J. 1985. The system specifying body position in the early development of Xenopus, and its response to perturbations. J. Embryol. Exp. Morphol. 89 (Suppl.):69–87.

    PubMed  Google Scholar 

  • Cooke, J. 1987. Dynamics of the control of body pattern in the development of Xenopus laevis. IV. Timing and pattern in the development of twinned bodies after re-orientation of eggs in gravity. Development 99:417–427.

    PubMed  CAS  Google Scholar 

  • Cooke, J. 1989a. The early amphibian embryo: Evidence for activating and for modulating or self-limiting components in a signalling system that underlies pattern formation, p. 145–158. In: Cell to Cell Signalling. A. Goldbeter (Ed.). Academic Press, New York.

    Google Scholar 

  • Cooke, J. 1989b. Mesoderm-inducing factors and Spemann’s organiser phenomenon in amphibian development. Development 107:229–241.

    PubMed  CAS  Google Scholar 

  • Cooke, J. 1989c. Xenopus mesoderm induction: Evidence for early size control and partial autonomy for pattern development by onset of gastrulation. Development 106:519–529.

    PubMed  CAS  Google Scholar 

  • Cooke, J. and E.J. Smith. 1988. The restrictive effect of early exposure to lithium upon body pattern in Xenopus development, studied by quantitative anatomy and immunofluorescence. Development 102:85–99.

    PubMed  CAS  Google Scholar 

  • Cooke, J. and J.C. Smith. 1989. Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: Experiments testing models for the normal organisation of mesoderm. Dev. Biol. 131:383–400.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, J. and J.C. Smith. 1990. Measurement of developmental time by cells of early embryos. Cell 10:891–894.

    Article  Google Scholar 

  • Cooke, J., J.C. Smith, E.J. Smith, and M. Yaqoob. 1987. The organisation of mesodermal pattern in Xenopus laevis: Experiments using a Xenopus mesoderm-inducing factor. Development 101:893–908.

    PubMed  CAS  Google Scholar 

  • Cooke, J., K. Symes, and E.J. Smith. 1989. Potentiation by the lithium ion of morphogenetic responses to a Xenopus inducing factor. Development 105:549–588.

    PubMed  CAS  Google Scholar 

  • Cooke, J. and J.A. Webber. 1985. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorso-anterior and of posterior blastomere pairs, isolated at the 4-cell stage. J. Embryol. Exp. Morphol. 88:85–112.

    PubMed  CAS  Google Scholar 

  • Cooke, J. and E.C. Zeeman. 1976. A clock and wavefront model for the control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58:455–476.

    Article  PubMed  CAS  Google Scholar 

  • Dale, L. and J.M.W. Slack. 1987a. Fate map for the 32-cell stage of Xenopus laevis. Development 99:197–210.

    Google Scholar 

  • Dale, L. and J.M.W. Slack. 1987b. Regional specification within the mesoderm of early embryos of Xenopus laevis. Development 100:279–295.

    PubMed  CAS  Google Scholar 

  • Dixon, J.E. and C.R. Kintner. 1989. Cellular contacts required for neural induction in Xenopus embryos: Evidence for two signals. Development 106:749–757.

    PubMed  CAS  Google Scholar 

  • Gerhart, J., T. Doniach, and R. Stewart. 1991. Organizing the Xenopus Organizer, p. 57–78. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.

    Google Scholar 

  • Gierer, A. and H. Meinhardt. 1972. A theory of biological pattern formation. Kybernetik 12:30–39.

    Article  PubMed  CAS  Google Scholar 

  • Gimlich, R.L. 1986. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Dev. Biol. 115:340–352.

    Article  PubMed  CAS  Google Scholar 

  • Gimlich, R.L. and J. Gerhart. 1984. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104:117–130.

    Article  CAS  Google Scholar 

  • Green, J.B.A., G. Howes, K. Symes, J. Cooke, and J.C. Smith. 1990. The biological effects of XTC-MIF: Quantitative comparison with Xenopus. Development 108:173–183.

    PubMed  CAS  Google Scholar 

  • Green, J.B.A. and J.C. Smith. 1990. Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate. Nature 347:391–394.

    Article  PubMed  CAS  Google Scholar 

  • Gurdon, J.B., S. Fairman, T.J. Mohun, and S. Brennan. 1985. Activation of muscle-specific actin genes in Xenopus development by an induction between animal and vegetal cells of a blastula. Cell 41:913–922.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. 1976. Vital dye mapping of the gastrula and neurula of Xenopus laevis. II. Prospective areas and morphogenetic movements of the deep region. Dev. Biol. 51:118–137.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. 1980. The cellular basis of epiboly: An SEM study of deep cell rearrangement during gastrulation in Xenopus laevis. J. Embryol. Exp. Morphol. 60:201–234.

    PubMed  CAS  Google Scholar 

  • Keller, R.E. 1986. The cellular basis of amphibian gastrulation. p. 241–328. In: The Cellular Basis of Morphogenesis. L. B. (Ed.). Plenum Press, New York.

    Chapter  Google Scholar 

  • Keller, R.E., M. Danilchik, R.L. Gimlich, and J. Shih. 1985. The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89 (Suppl.): 185–209.

    PubMed  Google Scholar 

  • Kimelman, D., J.A. Abraham, T. Haaparanta, T.M. Palisi, and M.W. Kirschner. 1988. The presence of fibroblast growth factor in the frog egg, its role as a natural mesoderm inducer. Science 242:1053–1056.

    Article  PubMed  CAS  Google Scholar 

  • Kochav, S., M. Ginsburg, and H. Eyal-Giladi. 1980. From cleavage to primitive streak formation: A complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev. Biol. 79:296–308.

    Article  PubMed  CAS  Google Scholar 

  • London, C., R. Akers, and C. Phillips. 1988. Expression of Epi-1, an epidermis-specific marker in Xenopus laevis embryos, is specified prior to gastrulation. Dev. Biol. 129:380–389.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt, H. 1982. Models of Biological Pattern Formation. Academic Press, London.

    Google Scholar 

  • Mitrani, E. and Y. Shimoni. 1990. Induction by soluble factors of organised axial structures in chick epiblasts. Science 247:1092–1094.

    Article  PubMed  CAS  Google Scholar 

  • New, D.A.T. 1955. A new technique for the cultivation of the chick embryo in vitro. J. Embryol. Exp. Morph. 3:326–331.

    Google Scholar 

  • Nieuwkoop, P.D. 1977. Origin and establishment of embryonic polar axes in amphibian development. Curr. Top. Dev. 11:115–132.

    Article  CAS  Google Scholar 

  • Nieuwkoop, P.D. and J. Faber. 1967. Normal table of Xenopus laevis (Daudin). 2nd edition. North Holland, Amsterdam.

    Google Scholar 

  • Rosa, F.M. 1989. Mix. 1, a homeobox RNA inducible by mesoderm inducers, is expressed mostly in the presumptive endodermal cells of Xenopus embryos. Cell 57:965–974.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Altaba, A. 1990. Neural expression of the Xenopus homeobox gene Xhox3: Evidence for a patterning neural signal that spreads through ectoderm. Development 108:595–604.

    CAS  Google Scholar 

  • Ruiz-Altaba, A. and D.A. Melton. 1989a. Bimodal and graded expression of the Xenopus homeobox gene Xhox3 during embryonic development. Development 106:173–183.

    CAS  Google Scholar 

  • Ruiz-Altaba, A. and D.A. Melton. 1989b. Interaction between peptide growth factors and homeobox genes in the establishment of antero-posterior polarity in frog embryos. Nature 341:33–38.

    Article  CAS  Google Scholar 

  • Sharpe, C.R., A. Fritz, E.M. De Robertis, and J.B. Gurdon. 1987. A homoebox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction. Cell 50:749–758.

    Article  PubMed  CAS  Google Scholar 

  • Slack, J.M.W. and D. Forman. 1980. An interaction between dorsal and ventral regions of the marginal zone in amphibian embryos. J. Embryol. Exp. Morphol. 56:283–299.

    PubMed  CAS  Google Scholar 

  • Slack, J.M.W., B.G. Darlington, L.L. Gillespie, S.F. Godsave, H.V. Isaacs, and G.D. Paterno. 1989. The role of fibroblast growth factor in early Xenopus development. Development 107 (Suppl.): 141–148.

    PubMed  CAS  Google Scholar 

  • Slack, J.M.W., B.G. Darlington, J.K. Heath, and S.F. Godsave. 1987. Mesoderm induction in early Xenopus embryos by heparin binding growth factors. Nature 326:197–200.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J.C, B.M.J. Price, K. Van Nimmen, and D. Huylebroeck. 1990a. Identification of a potent Xenopus mesoderm-inducing factor, as a homologue of activin A. Nature 354:729–731.

    Article  Google Scholar 

  • Smith, J.C. and J.M.W. Slack. 1983. Dorsalization and neural induction: Properties of the organizer in Xenopus laevis. J. Embryol. Exp. Morphol. 78:299–317.

    PubMed  CAS  Google Scholar 

  • Smith, J.C., K. Symes, R.O. Hynes, and D.W. DeSimone. 1990b. Mesoderm induction and the control of gastrulation in Xenopus laevis: The roles of fibronectin and integrins. Development 108:229–238.

    PubMed  CAS  Google Scholar 

  • Smith, J.C., M. Yaqoob, and K. Symes. 1988. Purification, partial characterisation and biological effects of the XTC mesoderm-inducing factor. Development 103:591–600.

    PubMed  CAS  Google Scholar 

  • Sokol, S., A.A. Wong, and D.A. Melton. 1990. A mouse macrophage factor induces head structure and organises a body axis in Xenopus. Science 249:561–564.

    Article  CAS  Google Scholar 

  • Spemann, H. and H. Mangold. 1924. Uber Induktion von Embryonenanlagen durch Implantation Artfremder Organisatoren. Wilhelm Roux’s Arch. Dev. Biol. 100:599–638.

    Google Scholar 

  • Stern, CD. and D.R. Canning. 1990. Origin of cells giving rise to mesoderm and endoderm in chick embryo. Nature 343:273–275.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, R.M. and J.C. Gerhart. 1990. The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the later blastula. Development 109:363–372.

    PubMed  CAS  Google Scholar 

  • Symes, K. and J.C. Smith. 1987. Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis. Development 101:339–350.

    Google Scholar 

  • Vale, W., J. River, J. Vaughan, R. McClintock, A. Corrigan, W. Woo, D. Karr, and J. Spiess. 1986. Purification and characterisation of a FSH-releasing protein from porcine ovarian follicular fluid. Nature 321:776–779.

    Article  PubMed  CAS  Google Scholar 

  • Van-Obberghen-Schilling, E., N.S. Roche, K.C Flanders, M.B. Sporn, and A.B. Roberts. 1988. Transforming growth factor β1 Positively regulates its own expression in normal and transformed cells. J. Biol. Chem. 263:7741–7746.

    PubMed  CAS  Google Scholar 

  • Warner, A. and J.B. Gurdon. 1987. Functional gap junctions are not required for muscle gene activation by induction in Xenopus embryos. J. Cell Biol. 104:557–564.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P.A., G. Oster, and R. Keller. 1989. Cell rearrangement and segmentation in Xenopus: Direct observation of cultured explants. Development 105:155–166.

    PubMed  CAS  Google Scholar 

  • Wolpert, L. 1971. Positional information and pattern formation. Curr. Top. Dev. 6:183–223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Cooke, J. (1991). The Arrangement of Early Inductive Signals in Relation to Gastrulation; Results from Frog and Chick. In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics