Skip to main content

Cell-Extracellular Matrix Interactions During Primary Mesenchyme Formation in the Sea Urchin Embryo

  • Chapter
Gastrulation

Part of the book series: Bodega Marine Laboratory Marine Science Series ((BMSS))

  • 145 Accesses

Abstract

Gastrulation in different organisms can involve distinct morphogenetic mechanisms, at least at the cellular level. In the sea urchin, two distinct periods of gastrulation are observed (Solursh 1986). One involves the formation of the primary mesenchyme cells, which give rise to the larval skeleton, and the other involves the formation of the archenteron. Each of these illustrate different sorts of cellular activities. The formation of the primary mesenchyme involves an epithelial-mesenchymal transition followed by the apparently random migration of individual mesenchymal cells in the blastocoel until they form two ventral-lateral clumps connected by a ring of cells. The formation of the archenteron involves the infolding of cells at the vegetal plate followed by cellular rearrangements as the archenteron elongates (see chapter by McClay).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasaka, K, S. Amemiya, and H. Terayama. 1980. Scanning electron microscopical study of the inside of sea urchin embryos (Pseudocentrotus depressus). Effects of aryl β-xyloside, tunicamycin and deprivation of sulfate ions. Exp. Cell Res. 129:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Amemiya, S. 1989. Electron microscopic studies on primary mesenchyme cell ingression and gastrulation in relation to vegetal pole cell behavior in sea urchin embryos. Exp. Cell Res. 183:453–462.

    Article  PubMed  CAS  Google Scholar 

  • Anstrom, J.A. 1989. Sea urchin primary mesenchyme cells: Ingression occurs independent of microtubules. Dev. Biol. 131:269–275.

    Article  PubMed  CAS  Google Scholar 

  • Anstrom, J.A. and R.A. Raff. 1988. Sea urchin primary mesenchyme cells: Relation of cell polarity to the epithelial-mesenchymal transformation. Dev. Biol. 130:57–66.

    Article  PubMed  CAS  Google Scholar 

  • Fink, R.D. and D.R. McClay. 1985. Three cell recognition changes accompany the ingression of sea urchin primary mesenchyme cells. Dev. Biol. 107:66–74.

    Article  PubMed  CAS  Google Scholar 

  • Funkunaga, Y., M. Sobue, N. Suzuka, H. Kushida, and S. Suzuki. 1975. Synthesis of a fluorogenic mucopolysaccharide by chondrocytes in cell culture with 4-methylumbelliferyl β-D-xyloside. Biochim. Biophys. Acta 381:443–447.

    Article  Google Scholar 

  • Galligani, L., J. Hopwood, N.B. Schwartz, and A. Dorfman. 1975. Stimulation of synthesis of free chondroitin sulfate chains by β-D-xyloside in cultured cells. J. Biol. Chem. 250:5400–5406.

    PubMed  CAS  Google Scholar 

  • Gibbons, J.R., L.G. Tilney, and K.R. Porter. 1969. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules. J. Cell Biol. 41:201–226.

    Article  Google Scholar 

  • Gustafson, T. and H. Kinnander. 1956. Microaquaria for time-lapse cinematographic studies of morphogenesis in swimming larvae and observations on sea urchin gastrulation. Exp. Cell Res. 11:36–51.

    Article  PubMed  CAS  Google Scholar 

  • Gustafson, T. and L. Wolpert. 1963. The cellular basis of morphogenesis and sea urchin development. Int. Rev. Cytol. 15:139–214.

    Article  PubMed  CAS  Google Scholar 

  • Herbst, C. 1904. Ãœber die zur Entwicklung der Seeigelarven nothwendigen anorganischen Stoffe, ihre Rolle und Vertretbarkeit. III. Theil. Die Rolle der nothwendigen anorganischen Stoffe. Wilhelm Rouxs Arch. Dev. Biol. 17:306–520.

    Google Scholar 

  • Karp, G.C. and M. Solursh. 1974. Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo. Dev. Biol. 41:110–123.

    Article  PubMed  CAS  Google Scholar 

  • Katow, H. and M. Solursh. 1980. Ultrastructure of primary mesenchyme cell ingression in the sea urchin, Lytechnius pictus. J. Exp. Zool. 213:231–246.

    Article  Google Scholar 

  • Katow, H. and M. Solursh. 1981. Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos. Exp. Cell Res. 136:233–245.

    Article  PubMed  CAS  Google Scholar 

  • Lane M.C. and M. Solursh. 1988. Dependence of sea urchin primary mesenchyme cell migration on xyloside- and sulfate-sensitive cell surface-associated components. Dev. Biol. 127:78–87.

    Article  PubMed  CAS  Google Scholar 

  • Lane, M.C. and M. Solursh. 1991. Primary mesenchyme cell migration requires a chondroitin sulfate/dermatan sulfate proteoglycan. Dev. Biol. 143:389–397.

    Article  PubMed  CAS  Google Scholar 

  • Solursh, M. 1986. Migration of sea urchin primary mesenchyme cells, p. 391–431. In: Developmental Biology: A Comprehensive Synthesis, vol 2, The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.

    Google Scholar 

  • Solursh, M., S.L. Mitchell, and H. Katow 1986. Inhibition of cell migration in sea urchin embryos by β-D-xyloside. Dev. Biol 118:325–332.

    Article  PubMed  CAS  Google Scholar 

  • Solursh, M. and J.P. Revel. 1978. A scanning electron microscope study of cell shape and cell appendages in the primitive streak region of the rat and chick embryo. Differentiation 11:185–190.

    Article  PubMed  CAS  Google Scholar 

  • Venkatasubramanian, K and M. Solursh. 1984. Adhesive and migratory behavior of normal and sulfate-deficient sea urchin cells in vitro. Exp. Cell Res. 154:421–431.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, KM. and J.A. Weston. 1975. The synthesis, turnover, and artificial restoration of a major cell surface glycoprotein. Cell 5:75–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Solursh, M., Lane, M.C. (1991). Cell-Extracellular Matrix Interactions During Primary Mesenchyme Formation in the Sea Urchin Embryo. In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics