Skip to main content

Rapid Evolution of Early Development: Reorganization of Early Morphogenetic Processes in a Direct-Developing Sea Urchin

  • Chapter
Gastrulation

Abstract

A century ago Wilhelm Roux proposed that the underlying processes of development could be revealed by experimental interference with specific developmental events (Roux 1895). Most of our current understanding of developmental processes has been achieved by experimental studies along the lines propounded by Roux. Modern practice uses experimental manipulations at cellular, molecular, and genetic levels, with primary emphasis on gaining an understanding of mechanisms of development. Evolutionary questions are seldom asked, and have had little influence on the mainstream of modern developmental biology. Nevertheless, some 20th Century investigators have maintained an interest in the study of the role of developmental processes in evolution (see Bonner 1982; Garstang 1922; deBeer 1958; Gould 1977; Raff and Kaufman 1983). An appreciation of the role of evolution in developmental biology has begun to take hold during the past decade with a growing interest in the attempt to fuse these two very dissimilar disciplines in a workable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberch, P. 1982. Developmental constraints in evolutionary processes, p. 313–332. In: Evolution and Development. J.T. Bonner (Ed.). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Ambros, V. 1989. A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell 57:49–57.

    Article  PubMed  CAS  Google Scholar 

  • Ambros, V. and W. Fixsen. 1987. Cell lineage variation among nematodes, p. 139–159. In: Development as an Evolutionary Process. R.A. Raff and E.C. Raff (Eds.). Alan R. Liss, New York.

    Google Scholar 

  • Anderson, K.V. 1989. Drosophila: the maternal contribution, p. 1–37. In: Genes and Embryos. D.M. Glover and B.D. Hames (Eds.). IRL Press, Oxford.

    Google Scholar 

  • Arnolds, W.J.A., J.A.M. van den Biggelaar, and N.H. Verdonk. 1983. Spatial aspects of cell interactions involved in the determination of dorsoventral polarity in the equally-cleaving gastropods and regulative abilities of their embryos, as studied by micromere deletions in Lymnaea and Patella. Wilhelm Roux’s Arch. Dev. Biol.192:281–295.

    Google Scholar 

  • Arthur, W. 1988. A Theory of the Evolution of Development. John Wiley, Chichester.

    Google Scholar 

  • Bisgrove, B.W. and R.A. Raff. 1989. Evolutionary conservation of the larval serotonergic nervous system in a direct developing sea urchin. Dev. Growth & Differ.31:363–370.

    Article  Google Scholar 

  • Bonner, J.T. (Ed.). 1982. Evolution and Development. Springer-Verlag, Berlin.

    Google Scholar 

  • Boveri, T. 1901. Die Polarität von Oocyte, Ei, und Larve des Strongylocentrotus lividus. Zool. Jahrb. Abt. Anat. Ontog. Tiere14:630–653.

    Google Scholar 

  • Buss, L.W. 1987. The Evolution of Individuality.Princeton University Press, Princeton.

    Google Scholar 

  • Cameron, R.A., S.E. Fraser, R.J. Britten, and E.H. Davidson. 1989. The oral-aboral axis of a sea urchin embryo is specified by first cleavage. Development106:641–647.

    PubMed  CAS  Google Scholar 

  • Cameron, R.A., S.E. Fraser, R.J. Britten, and E.H. Davidson. 1990. Segregation of oral from aboral ectoderm precursors is completed at 5th cleavage in the embryogenesis of Strongylocentrotus purpuratus. Dev. Biol. 137:77–85.

    Article  PubMed  CAS  Google Scholar 

  • Cameron, R.A., B.R. Hough-Evans, R.J. Britten, and E.H. Davidson. 1987. Lineage and fate of each blastomere of the sea urchin embryo. Genes Dev.1:75–84.

    Article  PubMed  CAS  Google Scholar 

  • Clement, A.C. 1952. Experimental studies on germinal localization in Ilyanassa. I. The role of the polar lobe in determination of the cleavage pattern and its influence on later development. J. Exp. Zool.121:563–626.

    Article  Google Scholar 

  • Cox, K.H., L.M. Angerer, J.J. Lee, E.H. Davidson, and R.C. Angerer. 1986. Cell lineage-specific programs of expression of multiple actin genes during sea urchin embryogenesis. J. Mol. Biol.188:159–172.

    Article  PubMed  CAS  Google Scholar 

  • Czihak, G. 1960. Untersuchungen uber die Coelomanlagen und die Metamorphose des Pluteus von Psammechinus miliaris (Gmelin). Zool. Jahrb. Abt. Anat. Ontog. Tiere.78:235–256.

    Google Scholar 

  • Czihak, G. 1965. Entwicklungsphysiologische Untersuchungen an Echiniden. Experimentelle Analyse der Coelomentwicklung. Wilhelm Roux’ Arch. Entwicklungsmech. Org.155:709–729.

    Article  Google Scholar 

  • Dan, K. 1979. Studies on unequal cleavage in sea urchins. I. Migration of the nuclei to the vegetal pole. Dev. Growth & Differ.21:527–535.

    Article  Google Scholar 

  • Darnell, J., H. Lodish, and D. Baltimore. 1990. Molecular Cell Biology. 2nd ed. Scientific American Books, New York.

    Google Scholar 

  • Davidson, E.H. 1989. Lineage-specific gene expression and the regulative capacities of the sea urchin embryo. Development105:421–445.

    PubMed  CAS  Google Scholar 

  • deBeer, G.R. 1958. Embryos and Ancestors. 3rd edition. Clarendon Press, Oxford.

    Google Scholar 

  • Emlet, R.B., L.R. McEdward, and R.R. Strathmann. 1987. Echinoderm larval ecology viewed from the egg. p. 55–136. In: Echinoderm Studies, vol. 2. M. Jangoux and J.M. Lawrence (Eds.). A.A. Balkema, Rotterdam.

    Google Scholar 

  • Ettensohn, C.A. 1984. Primary invagination of the vegetal plate during sea urchin gastrulation. Am. Zool.24:571–588.

    Google Scholar 

  • Ettensohn, C.A. 1985. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells. Dev. Biol.112:383–390.

    Article  PubMed  CAS  Google Scholar 

  • Ettensohn, C.A. and D.R. McClay. 1988. Cell lineage conversion in the sea urchin embryo. Dev. Biol.125:396–409.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, G. 1982. What does a comparative study of development tell us about evolution? p. 155–167. In: Evolution and Development. J.Y. Bonner (Ed.). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Garstang, W. 1922. The theory of recapitulation: A critical restatement of the biogenetic law. J. Linn. Soc. Lond. Zool.35:81–101.

    Article  Google Scholar 

  • Gemmill, J.F. 1912. The development of the starfish Solaster endeca Forbes. Trans. Zool. Soc. Lond.20:1–71.

    Google Scholar 

  • Gemmill, J.F. 1916. Notes on the development of starfishes Asterias glacialia O.F.M.; Cribrella oculata (Linck) Forbes; Solaster endeca (Retzius) Forbes; Stichasterroseus (O.F.M.) Sars. Proc. Zool. Soc. Lond.39:553–565.

    Google Scholar 

  • Gould, S.J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge.

    Google Scholar 

  • Hardin, J. 1989. Local shifts in position and polarized motility drive cell rearrangements during sea urchin gastrulation. Dev. Biol.136:430–445.

    Article  PubMed  CAS  Google Scholar 

  • Hardin, J. and L.Y. Cheng. 1986. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol.115:490–501.

    Article  Google Scholar 

  • Hardin, J. and D.R. McClay. 1990. Target recognition by the archenteron during sea urchin gastrulation. Dev. Biol.142:86–102.

    Article  PubMed  CAS  Google Scholar 

  • Harkey, M.A. 1983. Determination and differentiation of micromeres in the sea urchin embryo, p. 131–155. In: Time, Space, and Pattern in Embryonic Development. W.R. Jeffery and R.A. Raff. (Eds.). Alan R. Liss, New York.

    Google Scholar 

  • Harvey, E.B. 1956. The American Arbacia and Other Sea Urchins. Princeton University Press, Princeton.

    Google Scholar 

  • Hayashi, R. 1972. On the relations between the breeding habits and larval forms in asteroids, with remarks on the wrinkled blastula. Proc. Jpn. Soc. Syst. Zool.8:42–48.

    Google Scholar 

  • Henry, J.J., S. Amemiya, G.A. Wray, and R.A. Raff. 1989. Early inductive interactions are involved in restricting cell fates of mesomeres in sea urchin embryos. Dev. Biol.136:140–153.

    Article  PubMed  CAS  Google Scholar 

  • Henry, J.J. and R.A. Raff. 1990. Evolutionary change in the process of dorsoventral axis determination in the direct developing sea urchin, Heliocidaris erythrogramma.Dev. Biol141:55–69.

    Article  PubMed  CAS  Google Scholar 

  • Henry, J.J., G.A. Wray, and R.A. Raff. 1990. The dorsoventral axis is specified prior to first cleavage in the direct developing sea urchin, Heliocidaris erythrogramma. Development110:875–884.

    PubMed  CAS  Google Scholar 

  • Henry, J.J., G.A. Wray, and R.A. Raff. 1991. Mechanism of an alternate type of echinoderm blastula formation: The wrinkled blastula of the sea urchin Heliocidaris erythrogramma. Dev. Growth & Differ. 33:317–328.

    Article  Google Scholar 

  • Hörstadius, S. 1939. Über die Entwicklung von Astropecten aranciacus L. Pubbl. Stne. Zool. Napoli.17:221–312.

    Google Scholar 

  • Hörstadius, S. 1973. Experimental Embryology of Echinoderms. Clarendon Press, Oxford.

    Google Scholar 

  • Hörstadius, S. and A. Wolskey. 1936. Studien über die Determination der Bilateralsymmetrie des jungen Seeigel Keimes. Wilhelm Roux’s Arch. Dev. Biol.135:69–113.

    Article  Google Scholar 

  • Inaba, D. 1968. Holothuria. p. 316–329. In: Invertebrate Embryology. M. Kúme and K. Dan (Eds.). Nolit, Belgrade.

    Google Scholar 

  • Jenkinson, J.W. 1911. On the origin of the polar and bilateral structure of the egg of the sea urchin. Wilhelm Roux’s Arch. Dev. Biol32:699–716.

    Google Scholar 

  • Kier, P.M. 1984. Echinoids from the Triassic (St. Cassian) of Italy, their lantern supports, and revised phylogeny of Triassic echinoids. Smithson. Contrib. Paleobiol56:1–41.

    Google Scholar 

  • Kominami, T. 1983. Establishment of embryonic axes in larvae of the starfish, Asterina pectinifera. J. Embryol Exp. Morphol. 75:87–100.

    PubMed  CAS  Google Scholar 

  • Kominami, T. 1988. Determination of dorsoventral axis in early embryos of the sea urchin Hemicentrotus pulcherrimus. Dev. Biol.127:187–196.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, K. 1951. Some observations on the development of the sea-star Leptasterias ochotensis similspinis (Clark). J. Fac. Sci. Hokkaido Univ. Ser. VI Zool10:97–105.

    Google Scholar 

  • Laegdsgaard, P. 1989. The Reproduction of the Co-occurring Species of the Sea Urchin Heliocidaris in the Sydney Region. Honors Thesis, University of Sydney, Australia.

    Google Scholar 

  • Lillie, F.R. 1895. The embryology of the Unionidae. J. Morphol.10:1–100.

    Article  Google Scholar 

  • Lindahl, P.E. 1932. Zur experimentellen Analyse der Determination der Dorsoventralachse beim Seeigelkeim. I. Versuch mit gestreckten Eiern. Wilhelm Roux’s Arch. Dev. Biol127:300–322.

    Article  Google Scholar 

  • McMillan, W.O., R.A. Raff, and S.R. Palumbi. 1991. Population genetic consequences of reduced dispersal in a direct-developing sea urchin, Heliocidaris erythrogramma. Evolution, In press.

    Google Scholar 

  • Martindale, M.Q., C.Q. Doe, and J.B. Morrill. 1985. The role of animal-vegetal interaction with respect to the determination of dorsoventral polarity in the equal-cleaving spiralian, Lymnaea palustris. Wilhelm Roux’s Arch. Dev. Biol.194:281–295.

    Article  Google Scholar 

  • Maruyama, Y.K., Y. Nakaseko, and S. Yagi. 1985. Localization of cytoplasmic determinants responsible for primary mesenchyme formation and gastrulation in the unfertilized egg of the sea urchin Hemicentrotus pulcherrimus. J. Exp. Zool.236:155–163.

    Article  Google Scholar 

  • Maynard Smith, J., R. Burian, S. Kauffman, P. Alberch, J. Campbell, B. Goodwin, R. Laude, D. Raup, and L. Wolpert. 1985. Developmental constraints and evolution. Q. Rev. Biol.60:265–287.

    Article  Google Scholar 

  • Mladenov, P.V. 1979. Unusual lecithotrophic development of the Caribbean brittle star, Ophiothrix oerstedi. Mar. Biol.55:55–62.

    Article  Google Scholar 

  • Morgan, T.H. and G.B. Spooner. 1909. The polarity of the centrifuged egg. Wilhelm Roux’s Arch. Dev. Biol.28:104–117.

    Google Scholar 

  • Nitecki, M.H. (Ed.). 1990. Evolutionary Innovations. University of Chicago Press, Chicago.

    Google Scholar 

  • Okazaki, K. 1975. Normal development to metamorphosis, p. 177–232. In: The Sea Urchin Embryo. G. Czihak (Ed.). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Okazaki, K. and K. Dan. 1954. The metamorphosis of partial larvae of Peronella japonica Mortensen, a sand dollar. Biol. Bull.106:83–99.

    Article  Google Scholar 

  • Pace, N.R., D.K. Smith, G.J. Olse, and B.D. James. 1989. Phylogenetic comparative analysis and the secondary structure of ribonuclease P RNA—a review. Gene82:65–75.

    Article  PubMed  CAS  Google Scholar 

  • Parks, A.L., B.W. Bisgrove, G.A. Wray, and R.A. Raff. 1989. Direct development in the sea urchin Phyllacanthus parvispinus (Cidaroidea): Phylogenetic history and functional modification. Biol. Bull.177:96–109.

    Article  Google Scholar 

  • Parks, A.L., B.A. Parr, J.-E. Chin, D.S. Leaf, and R.A. Raff. 1988. Molecular analysis of heterochromic changes in the evolution of direct developing sea urchins. J. Evol. Biol.1:27–44.

    Article  Google Scholar 

  • Parr, B.P., A.L. Parks, and R.A. Raff. 1990. Promoter structure and protein sequence of mspl30, a lipid-anchored sea urchin glycoprotein. J. Biol. Chem.265:1408–1413.

    PubMed  CAS  Google Scholar 

  • Pehrson, J.R. and L.H. Cohen. 1986. The fate of the small micromeres in sea urchin development. Dev. Biol.113:522–526.

    Article  PubMed  CAS  Google Scholar 

  • Philip, G.M. 1965. The Tertiary echinoids of South-Eastern Australia III Stirodonta, Aulodonta, and Camarodonta (1). Proc. R. Soc. Victoria78:181–196.

    Google Scholar 

  • Raff, R.A. 1987. Constraint, flexibility, and phylogenetic history in the evolution of direct development in sea urchins. Dev. Biol.119:6–19.

    Article  PubMed  CAS  Google Scholar 

  • Raff, R.A. (Ed.). 1990. Heterochromic changes in development. Semin. Dev. Biol. 1:(4).

    Google Scholar 

    Google Scholar 

  • Raff, R.A. and T.C. Kaufman. 1983. Embryos, Genes, and Evolution. MacMillan, New York.

    Google Scholar 

  • Raff, R.A. and G.A. Wray. 1989. Heterochrony: Developmental mechanisms and evolutionary results. J. Evol. Biol.2:409–434.

    Article  Google Scholar 

  • Raff, R.A., G.A. Wray, and J.J. Henry. 1991. Implications of radical evolutionary changes in early development for concepts of developmental constraint, p. 189–207. In: New Perspectives on Evolution. L. Warren and H. Kaprowski (Eds.). Alan R. Liss, New York.

    Google Scholar 

  • Roux, W. 1895. The problems, methods and scope of developmental mechanics. An introduction to the “Archiv für Entwicklungsmechanik der Organismen,” translated by W.M. Wheeler, p. 149–190. In: Biological Lectures of the Marine Biological Laboratory of Woods Hole, Mass. Ginn and Company, Boston.

    Google Scholar 

  • Runnström, J. 1917. Analytische Studien Über die Seeigelenwicklung. III. Wilhelm Roux’s Arch. Dev. Biol.43:223–328.

    Google Scholar 

  • Runnström, J. 1975. Integrating factors, p. 646–670. In: The Sea Urchin Embryo., G. Czihak (Ed.). Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Scott, L.B., W.J. Lennarz, R.A. Raff, and G.A. Wray. 1990. The “lecithotrophic” sea urchin Heliocidaris erythrogramma lacks typical yolk platelets and yolk glycoproteins. Dev. Biol.138:188–193.

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, T.E. 1980. Expression of the preformation polar axis in sea urchin eggs. Dev. Biol.79:428–443.

    Article  PubMed  CAS  Google Scholar 

  • Smith, A.B. 1988a. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence, p. 85–97. In: Echinoderm Phylogeny and Evolutionary Biology. C.R.C. Paul and A.B. Smith (Eds.). Clarendon Press, Oxford.

    Google Scholar 

  • Smith, A.B. 1988b. Phylogenetic relationship, divergence times, and rates of molecular evolution for camarodont sea urchins. Mol. Biol. Evol.5:345–365.

    CAS  Google Scholar 

  • Smith, M.J., J.D. G. Boom, and R.A. Raff. 1990. Single copy DNA distance between two congeneric sea urchin species exhibiting radically different modes of development. Mol. Biol. Evol.7:315–326.

    PubMed  CAS  Google Scholar 

  • Stern, C. 1990. The evolution of segmental patterns. Semin. Dev. Biol.1:75–145.

    Google Scholar 

  • Sternberg, P.W. and H.R. Horvitz. 1984. The genetic control of cell lineage during nematode development. Annu. Rev. Genet.18:489–524.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, P.W. and H.R. Horvitz. 1981. Gonadal cell lineages of the nematode Panagrellus redivivus and implications for evolution by modification of cell lineage. Dev. Biol.88:147–166.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, P.W. and H.R. Horvitz. 1982. Postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus: Description and comparison with those of Caenorhabditis elegans. Dev. Biol.93:181–205.

    Article  PubMed  CAS  Google Scholar 

  • Strathmann, M.F. 1987. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast. University Washington Press, Seattle.

    Google Scholar 

  • Strathmann, R.R. 1978. The evolution and loss of larval feeding stages of marine invertebrates. Evolution. 32:894–906.

    Article  Google Scholar 

  • Sulston, J.E., E. Schierenberg, J.G. White, and J.N. Thomason. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol.100:64–119.

    Article  PubMed  CAS  Google Scholar 

  • van den Biggelaar, JAM. and P. Guerrier. 1979. Dorsoventral polarity and mesentoblast determination as concomitant results of cellular interactions in the mollusc Patella vulgata. Dev. Biol.68:462–471.

    Article  PubMed  Google Scholar 

  • Waugh, D.S., C.J. Green, and N.R. Pace. 1989. The design and catalytic properties of a simplified ribonuclease P RNA. Science244:1569–1571.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D.H.C. and D.T. Anderson. 1975. The reproductive system, embryonic development, larval development, and metamorphosis of the sea urchin Heliocidaris erythrogramma (Val.) (Echinoidea: Echinometridae). Aust. J. Zool.23:371–403.

    Article  Google Scholar 

  • Woese, C.R., R. Gutell, R. Gupta, and H.F. Noller. 1983. Detailed analysis of higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev.47:621–699.

    PubMed  CAS  Google Scholar 

  • Wray, G.A. and R.A. Raff. 1989. Evolutionary modification of cell lineage in the direct-developing sea urchin Heliocidaris erythrogramma. Dev. Biol.132:458–470.

    Article  PubMed  CAS  Google Scholar 

  • Wray, G.A. and R.A. Raff. 1990. Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma. Dev. Biol.141:41–54.

    Article  PubMed  CAS  Google Scholar 

  • Wray, G.A. and R.A. Raff. 1991a. The evolution of developmental strategy in marine invertebrates. Trends Ecol. Evol.6:45–50.

    Article  CAS  Google Scholar 

  • Wray, G.A. and R.A. Raff. 1991b. Rapid evolution of gastrulation mechanisms in a direct-developing sea urchin. Evolution, In press.

    Google Scholar 

  • Yang, Q., L.M. Angerer, and R.C. Angerer. 1989. Unusual pattern of accumulation of mRNA encoding EGF-related protein in sea urchin embryos. Science246:806–808.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Raff, R.A., Henry, J.J., Wray, G.A. (1991). Rapid Evolution of Early Development: Reorganization of Early Morphogenetic Processes in a Direct-Developing Sea Urchin. In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics