Skip to main content

Convergence and Extension during Germband Elongation in Drosophila Embryos

  • Chapter
Gastrulation

Abstract

After the initial infoldings of gastrulation, the ventral region of the Drosophila embryo undergoes a rapid elongation called germband extension. This elongation is produced by intercalation of the more lateral cells as they move toward the ventral midline. In many respects, the process is very similar to the convergent extension which occurs during amphibian gastrulation and to elongation of the archenteron in sea urchins.

Several years ago, Gergen, Coulter and Wieschaus (1986) proposed that the intercalary behavior of cells during germband elongation reflects the adhesive preferences established in individual cells by the anterior-posterior patterning which occurs at the blastoderm stage. This model is formally very similar to the clock model used by French, Bryant, and Bryant (1976) to explain intercalary regeneration in imaginal discs and vertebrate limbs. In that model, positional values within a field are infinitely graded, and cells tolerate only finite differences between themselves and their immediate neighbors. When the discrepancies between adjacent cells are too great, the cells are induced to divide or otherwise fill in the gap. Surgical manipulations and wound healing induce cell proliferation and intercalary regeneration because they juxtapose cells with radically different positional identities.

In our model for germband extension, similarly abrupt juxtapositions of positional values would arise when the graded segmental field is condensed onto the limited number of precursors cells present in each segment at the gastrula stage. In contrast to the clock model, however, inappropriate juxtapositions in the early embryo are not resolved by induced cell proliferation. Instead, cells from the more dorsal regions which by chance have the appropriate intervening positional identities intercalate.

The article below presents a more detailed description of the model for germband extension and describes several tests of the model based on the predicted behavior of cells in embryos with aberrant anterior-posterior and dorsal-ventral patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akam, M. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22.

    PubMed  CAS  Google Scholar 

  • Anderson, K.V., G. Jurgens, and C. Nüsslein-Volhard. 1985. Establishment of dorsal-ventral polarity in the Drosophila embryo: Genetic studies on the role of the Toll gene product. Cell 42:779–789.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, S.B. and M.P. Scott. 1986. Zygotically active genes that affect the spatial expression of the Fushi-tarazu segmentation gene during early Drosophila embryogenesis. Cell 45:113–126.

    Article  PubMed  CAS  Google Scholar 

  • Dinardo, S. and P.H. O’Farrell. 1987. Establishment and refinement of segmental pattern in the Drosophila embryo: spatial control of engrailed expression by pair-rule genes. Genes Dev. 1:1212–1225.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, G.M. 1986. Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu. Rev. Cell Biol. 2:81–116.

    Article  PubMed  CAS  Google Scholar 

  • Ettensohn, C.A. 1985. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invagination epithelial cells. Dev. Biol. 112:385–390.

    Article  Google Scholar 

  • Frasch, M. and M. Levine. 1987. Complementary patterns of even-skipped and fushi tarazu expression involve their differential regulation by a common set of segmentation genes in Drosophila. Genes Dev. 1:981–995.

    Article  PubMed  CAS  Google Scholar 

  • French, V., P.J. Bryant, and S.V. Bryant. 1976. Pattern regeneration in epimorphic fields. Science 193:969–981.

    Article  PubMed  CAS  Google Scholar 

  • Foe, V. 1989. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22.

    PubMed  CAS  Google Scholar 

  • Gergen, J.P., D. Coulter, and E. Wieschaus. 1986. Segmental pattern and blastoderm cell identities. Symp. Soc. Dev. Biol. 43:195–220.

    Google Scholar 

  • Gergen, J.P. and E. Wieschaus. 1985. The localized requirements for a gene affecting segmentation in Drosophila: Analysis of larvae mosaic for runt. Dev. Biol. 109:321–335.

    Article  PubMed  CAS  Google Scholar 

  • Gergen, J.P. and E. Wieschaus. 1986. Dosage requirements for runt in the segmentation of Drosophila embryos. Cell 45:289–299.

    Article  PubMed  CAS  Google Scholar 

  • Hardin, J. 1988. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103:317–324.

    PubMed  CAS  Google Scholar 

  • Hardin, J. and L.Y. Cheng. 1986. The mechanisms and mechanics of archenteron elongation during sea urchin gastrulation. Dev. Biol. 115:490–501.

    Article  Google Scholar 

  • Hartenstein, V. and J.A. Campos-Ortega. 1985. Fate mapping in wild type Drosophila melanogaster. I. The spatio-temporal pattern of embryonic cell divisions. Wilhelm Roux’s Arch Dev. Biol. 194:181–195.

    Article  Google Scholar 

  • Ingham, P.W, N.E. Baker, and A. Martinez-Arias. 1988. Regulation of segment polarity genes in the Drosophila blastoderm by fushi-tarazu and even-skipped. Nature 331:73–75.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R., M.S. Cooper., M. Danilchik, P. Tibbetts, and P. Wilson. 1989. Cell intercalation during notochord development in Xenopus laevis. J. Exp. Zool. 251: 134–154.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R. and P. Tibbetts. 1989. Mediolateral cell intercalation in the dorsal axial mesoderm of Xenopus laevis. Dev. Biol. 131:539–549.

    Article  PubMed  CAS  Google Scholar 

  • Mittenthal, J.E. 1981. The rule of normal neighbors: A hypothesis for morphogenetic pattern regulation. Dev. Biol. 88:15–26.

    Article  PubMed  CAS  Google Scholar 

  • Nüsslein-Volhard, C. 1979. Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster. Symp. Soc. Dev. Biol. 37:185–211.

    Google Scholar 

  • Nüsslein-Volhard, C, H.G. Frohnhofer, and R. Lehmann. 1987. Determination of anteroposterior polarity in Drosophila. Science 238:1675–1681.

    Article  PubMed  Google Scholar 

  • Nüsslein-Volhard, C, H. Kluding, and G. Jurgens. 1985. Genes affecting the segmental subdivision of the Drosophila embryo. Cold Spring Harbor Symp. Quant. Biol. 50:145–154.

    Article  PubMed  Google Scholar 

  • Nüsslein-Volhard, C. and E. Wieschaus. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801.

    Article  PubMed  Google Scholar 

  • O’Farrell, P. and H.M. Scott. 1986. Spatial programming of gene expression in early Drosophila embryogenesis. Annu. Rev. Cell Biol. 2:49–80.

    Article  PubMed  Google Scholar 

  • Poulson, D.F. 1950. Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster Meigen. p. 168–274. In: Biology of Drosophila. M. Demerec (Ed.). John Wiley, New York.

    Google Scholar 

  • Rickoll, W.L. and S.J. Counce. 1980. Morphogenesis in the embryo of Drosophila melanogaster–Germ band extension. Wilhelm Roux’sArch. Dev. Biol. 188:163–177.

    Article  Google Scholar 

  • Schüpbach, G.M. and E. Wieschaus. 1986. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Wilhelm Roux’s Arch. Dev. Biol. 195:302–317.

    Article  Google Scholar 

  • Steinberg, M.S. and T.J. Poole. 1982. Liquid behavior of embryonic tissues, p. 583–607. In: Cell Behavior. R. Bellairs, A. Curtis, and G. Dunn (Eds). Cambridge University Press, Cambridge.

    Google Scholar 

  • Takeichi, M. 1988. The cadherins: Cell-cell adhesion molecules controlling animal morphogenesis. Development 102:639–665.

    PubMed  CAS  Google Scholar 

  • Turner, F.R. and A.P. Mahowald. 1977. Scanning electron microscopy of Drosophila melanogaster embryogenesis II. Gastrulation and segmentation. Dev. Biol. 57:403–416.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P.A., G. Oster, and R. Keller. 1989. Cell rearrangement and segmentation in Xenopus: direct observation of cultured explants. Development 105:155–166.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Wieschaus, E., Sweeton, D., Costa, M. (1991). Convergence and Extension during Germband Elongation in Drosophila Embryos. In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics