Skip to main content

The Expression of Fibronectins and Integrins During Mesodermal Induction and Gastrulation in Xenopus

  • Chapter
Gastrulation

Abstract

Fibronectins (FNs) and integrins are first expressed in Xenopus embryos during the mid to late blastula stages. FN is synthesized in both animal and vegetal halves of the embryo but becomes localized to the roof of the blastocoel during gastrulation. Integrins are expressed in all regions of the early embryo. Structural heterogeneity of FN isoforms during embryogenesis occurs by alternative splicing of a common FN transcript, whereas integrin diversity is generated by the expression of several distinct integrin αβ heterodimers. The timing of expression for these molecules suggests that they may play important roles in supporting and/or controlling morphogenetic events in the early embryo.

We have investigated the roles played by these proteins in supporting the gastrulation-like movements that occur in animal pole tissue in response to mesoderminducing factors. Xenopus animal pole ectoderm was isolated from stage 8 embryos and exposed to the XTC mesoderm inducing factor (XTC-MIF; a Xenopus homologue of activin A). Animal pole ectoderm treated with XTC-MIF, like stage 10 dorsal marginal zone, will adhere and spread on FN coated surfaces. Uninduced animal pole ectoderm adheres poorly and does not spread on FN. The ability to spread on FN in response to XTC-MIF is also retained by single cells derived from dissociated animal pole tissue. This defines one of the few mesoderm-specific responses to induction that has been demonstrated for single cells. FN-mediated cell spreading is inhibited in the presence of the synthetic peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP), which corresponds to one of the active cell binding sites on the FN molecule. However, the gastrulation-like movements associated with elongation of XTC-MIF induced animal pole ectoderm are not inhibited by the GRGDSP peptide. These results indicate that convergent extension does not depend on cell adhesion to FN. Furthermore, scanning electron microscopy and cell marking techniques suggest that although cellular activity is enhanced following induction, no long range cell mixing occurs during elongation of induced explants. We are now investigating whether the changes in cell adhesion observed following induction with XTC-MIF are controlled by the expression of integrin receptors and ECM molecules such as FN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C and F.M. Watt. 1990. Changes in keratinocyte adhesion during terminal differentiation: Reduction in fibronectin binding precedes α5βi integrin loss from the cell surface. Cell 63:425–435.

    Article  PubMed  CAS  Google Scholar 

  • Albelda, S.M. and C.A. Buck. 1990. Integrins and other cell adhesion molecules. FASEB J. 4:2868–2880.

    PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, H. Boulekbache, and J.-P. Thiery. 1984a. Prevention of gastrulation but not neurulation by antibody to fibronectin in amphibian embryos. Nature 307:364–367.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, T.J. Poole, H. Aoyama, K.M. Yamada, and J.-P. Thiery. 1984b. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99:1822–1830.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, D. Shi, J.-F. Riou, K.E. Johnson, and M. Delarue. 1991. Amphibian Gastrulation: The Molecular Bases of Mesodermal Cell Migration in Urodele Embryos, p. 169–184. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffin (Eds.). Plenum Press, New York.

    Google Scholar 

  • Cooke, J. and J.C. Smith. 1989. Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus inducing factor: Experiments testing models for the normal organization of mesoderm. Dev. Biol. 131:383–400.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, J., J.C. Smith, E.J. Smith, and M. Yaqoob. 1987. The organization of mesodermal pattern in Xenopus laevis:Experiments using a Xenopus mesoderm-inducing factor. Development 101:893–908.

    PubMed  CAS  Google Scholar 

  • Darribère, T., K. Guida, H. Larjava, K.E. Johnson, KM. Yamada, J.-P. Thiery, and J.-C. Boucaut. 1990. In vivo analyses of integrin β1 subunit function in fibronectin matrix assembly. J. Cell Biol.110:1813–1823.

    Article  PubMed  Google Scholar 

  • Darribère, T., K.M. Yamada, K.E. Johnson, and J.-C. Boucaut. 1988. The 140 kD fibronectin receptor complex is required for mesodermal cell adhesion during gastrulation in the amphibian Pleurodeles waltlii. Dev. Biol. 126:182–194.

    Article  PubMed  Google Scholar 

  • DeSimone, D.W. and R.O. Hynes. 1988. Xenopus laevis integrins: Structural conservation and evolutionary divergence of integrin β subunits. J. Biol. Chem. 263:5333–5340.

    PubMed  CAS  Google Scholar 

  • Gimlich, R.L. and J. Braun. 1985. Improved fluorescent compound for tracing cell lineage. Dev. Biol. 109:509–514.

    Article  PubMed  CAS  Google Scholar 

  • Heino, J., R.A. Ignotz, M.E. Hemler, C. Crouse, J. Massague. 1989. Regulation of cell adhesion receptors by transforming growth factor-β. Concomitant regulation of integrins that share a common β1 subunit. J. Biol. Chem. 264:380–388.

    PubMed  CAS  Google Scholar 

  • Heino, J. and J. Massague. 1989. Transforming growth factor β switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of adhesion to laminin. J. Biol. Chem. 264:21806–21811.

    PubMed  CAS  Google Scholar 

  • Hynes, R.O. 1990. Fibronectins. Springer Verlag, New York.

    Book  Google Scholar 

  • Johnson, K.E., J.C. Boucaut, and D.W. DeSimone. 1991. The role of the extracellular matrix in amphibian gastrulation. Curr. Top. Dev. Biol. In press.

    Google Scholar 

  • Keller, R.E. and J. Hardin. 1987. Cell behavior during active cell rearrangement: Evidence and speculations. J. Cell Set Suppl 8:369–393.

    CAS  Google Scholar 

  • Keller, R.E. and P. Tibbetts. 1989. Mediolateral cell intercalation in the dorsal axial mesoderm of Xenopus laevis. Dev. Biol. 131:539–549.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R., J. Shih, and P. Wilson. 1991. Cell Motility, Control and Function of Convergence and Extension During Gastrulation in Xenopus. p. 101–120. In: Gastrulation: Movements, Patterns, and Molecules. R. Keller, W.H. Clark, Jr., F. Griffm (Eds.). Plenum Press, New York.

    Google Scholar 

  • Komazaki, S. 1988. Factors related to the initiation of cell migration along the inner surface of the blastocoelic wall during amphibian gastrulation. Cell Differ. 24:25–32.

    Article  PubMed  CAS  Google Scholar 

  • Krieg, P.A. and D.A. Melton. 1987. In vitro synthesis with SP6 RNA polymerase. Methods Enzymol. 155:397–415.

    Article  PubMed  CAS  Google Scholar 

  • Lee, G., R.O. Hynes, and M. Kirshner. 1984. Temporal and spatial regulation of fibronectin in early Xenopus development. Cell 36:729–740.

    Article  PubMed  CAS  Google Scholar 

  • Marcantonio, E.E. and R.O. Hynes. 1988. Antibodies to the conserved cytoplasmic domain of the integrin β1 subunit react with proteins in vertebrates, invertebrates, and fungi. J. Cell Biol. 106:1765–1772.

    Article  PubMed  CAS  Google Scholar 

  • Massague, J. 1990. The transforming growth factor-β family. Annu. Rev. Cell Biol. 6:597–641.

    Article  PubMed  CAS  Google Scholar 

  • Melton, D.A. and R. Cortese. 1979. Transcription of cloned tRNA genes and nuclear partitioning of a tRNA precursor. Cell 18:1165–1172.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuji, N. 1986. Presumptive mesodermal cells from Xenopus laevis gastrulae attach and migrate on substrata coated with fibronectin or laminin. J. Cell Sci. 86:109–118.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1983. Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species. J. Cell Sci. 59:61–70.

    PubMed  CAS  Google Scholar 

  • New, H.V. and J.C. Smith. 1990. Inductive interactions in early amphibian development. Curr. Opin. Cell Biol. 2:969–974.

    Article  PubMed  CAS  Google Scholar 

  • Newport, J., and M. Kirschner. 1982. A major developmental transition in early Xenopus embryos. 1. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwkoop, P.D. 1969. The formation of mesoderm in urodelean amphibians. I. Induction by the endoderm. Wilhelm Roux’Arch. Entwicklungsmech. Org. 162:341–347.

    Article  Google Scholar 

  • Nieuwkoop, P.D. and J. Faber. 1967. Normal table of Xenopus laevis (Daudin). 2nd edition. North-Holland, Amsterdam.

    Google Scholar 

  • Nieuwkoop, P.D. and S. Sudarwati. 1971. Mesoderm formation in the Anuran Xenopus laevis (Daudin). Wilhelm Roux’s Arch. Dev. Biol. 166:189–204.

    Article  Google Scholar 

  • Pierschbacher, M.D. and E. Ruoslahti. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33.

    Article  PubMed  CAS  Google Scholar 

  • Pytela, R., M.D. Pierschbacher, and E. Ruoslahti. 1985. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 40:191–198.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, D.G. and D.W. DeSimone. 1990. Cloning and characterization of multiple integrin αand β subunits expressed in Xenopus embryos. J. Cell Biol. 111:142a.

    Google Scholar 

  • Shi, D.-L., T. Darribère, K.E. Johnson, and J.-C. Boucaut. 1989. Initiation of mesodermal cell migration and spreading relative to gastrulation in the urodele amphibian Pleurodeles waltl. Development 105:351–363.

    Google Scholar 

  • Slack, J.M. 1984. Regional biosynthetic markers in the early amphibian embryo. J. Embryol Exp. Morphol. 80:289–319.

    PubMed  CAS  Google Scholar 

  • Smith, J.C., K. Symes, R.O. Hynes, and D.W. DeSimone. 1990. Mesoderm induction and the control of gastrulation in Xenopus laevis: The roles of fibronectin and integrins. Development 108:229–238.

    PubMed  CAS  Google Scholar 

  • Smith, J.C., M. Yaqoob, and K. Symes. 1988. Purification, partial characterization and biological properties of the XTC mesoderm inducing factor. Development 103:591–600.

    PubMed  CAS  Google Scholar 

  • Symes, K. and J.C. Smith. 1987. Gastrulation movements provide an early marker of mesoderm induction in Xenopus laevis. Development 101:339–349.

    Google Scholar 

  • Tickle, C. and J.P. Trinkaus. 1973. Change in surface extensibility of Fundulus deep cells during early development. J. Cell. Sci. 13:721–726.

    PubMed  CAS  Google Scholar 

  • Wayner, E.A., A. Garcia-Pardo, M.J. Humphries, J.A. McDonald, and W.G. Carter. 1989. Identification and characterization of the lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J. Cell Biol. 109:1321–1330.

    Article  PubMed  CAS  Google Scholar 

  • Wetts, R. and S.E. Fraser. 1989. Slow intermixing of cells during Xenopus embryogenesis contributes to the consistency of the fate map. Development 105:9–15.

    PubMed  CAS  Google Scholar 

  • Winklbauer, R. 1988. Differential interaction of Xenopus embryonic cells with fibronectin in vitro. Dev. Biol. 130:175–183.

    Article  PubMed  CAS  Google Scholar 

  • Winklbauer, R. 1990. Mesodermal cell migration during Xenopus gastrulation. Dev. Biol. 142:155–168.

    Article  PubMed  CAS  Google Scholar 

  • Wollweber, L., R. Stracke, and U. Gothe. 1981. The use of a simple method to avoid cell shrinkage during SEM preparation. J. Microscopy 121:185–189.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

DeSimone, D.W., Smith, J.C., Howard, J.E., Ransom, D.G., Symes, K. (1991). The Expression of Fibronectins and Integrins During Mesodermal Induction and Gastrulation in Xenopus . In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics