Skip to main content

Amphibian Gastrulation: The Molecular Bases of Mesodermal Cell Migration in Urodele Embryos

  • Chapter
Gastrulation

Abstract

During the early developmental period of the vertebrate embryo, called gastrulation, changes in cell shape, cell number, and cell-cell associations produce fundamental changes in embryonic morphology. Selected populations of cells are designated to perform particular ensembles of cell movements. Typically, morphogenetic cell movements are regulated in a repeatable pattern from embryo to embryo. These morphogenetic cell movements lead to the organization of an embryo with three primary germ layers: ectoderm, mesoderm, and endoderm. It is difficult enough to understand how cells move from one location to another inside the embryo but even more mysterious why they choose one particular pathway for this locomotion from among the large number of pathways theoretically available to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, P.C. 1965. Fine structure and morphogenic movements in the gastrula of the tree frog, Hyla regilla. J. Cell Biol. 24:95–116.

    Article  CAS  Google Scholar 

  • Beetschen, J.C. and M. Fernandez. 1979. Studies on the maternal effect of the semi-lethal factor ac in the salamander Pleurodeles waltlii. p. 269–286. In: Maternal Effects in Development. D.R. Newth and M. Balls (Eds.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Boucaut, J.-C. and T. Darribère. 1983a. Fibronectin in early amphibian embryos: Migrating mesodermal cells are in contact with a fibronectin-rich fibrillar matrix established prior to gastrulation. Cell Tissue Res. 234:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C. and T. Darribère. 1983b. Presence of fibronectin during early embryogenesis in the amphibian Pleurodeles waltlii.Cell Differ. 12:77–83.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, H. Boulekbache, and J.P. Thiery. 1984a. Prevention of gastrulation but not neurulation by antibody to fibronectin in amphibian embryos. Nature 307:364–367.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, T.J. Poole, H. Aoyama, K.M. Yamada, and J.P. Thiery. 1984b. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J. Cell Biol. 99:1822–1830.

    Article  PubMed  CAS  Google Scholar 

  • Boucaut, J.-C, T. Darribère, D.L. Shi, H. Boulekbache, K.M. Yamada, and J.P. Thiery. 1985. Evidence for the role of fibronectin in amphibian gastrulation. J. Embryol. Exp. Morphol. 89 (Suppl.):211–227.

    PubMed  Google Scholar 

  • Boucaut, J.-C, K.E. Johnson, T. Darribère, D.-L. Shi, K.-F. Riou, H. Boulekbache, and M. Delarue. 1990. Fibronectin-rich fibrillar extracellular matrix controls cell migration during amphibian gastrulation. Int. J. Dev. Biol. 34:139–147.

    PubMed  CAS  Google Scholar 

  • Chiquet, M. and D.M. Fambrough. 1984a. Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J. Cell Biol. 98:1926–1936.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet, M. and D.M. Fambrough. 1984b Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits. J. Cell Biol. 98:1937–1947.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann, R., P. Kalla, C.A. Pearson, K. Beck, and M. Chiquet. 1988. Tenascin interferes with fibronectin action. Cell 53:383–390.

    Article  PubMed  CAS  Google Scholar 

  • Chiquet-Ehrismann, R., E.J. Makie, C.A. Pearson, and T. Sakakura. 1986. Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 47:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Crossin, K.L., S. Hoffman, M. Grumet, J.P. Thiery, and G.M. Edelman. 1986. Site-restricted expression of cytotactin during development of the chick embryo. J. Cell Biol. 102:1917–1930.

    Article  PubMed  CAS  Google Scholar 

  • Darribère, T., D. Boucher, J.-C. Lacroix, and J.-C. Boucaut. 1984. Fibronectin synthesis during oogenesis and early development of the amphibian Pleurodeles waltlii. Cell Differ. 14:171–177.

    Article  Google Scholar 

  • Darribère, T., H. Boulekbache, D.L. Shi, and J.-C. Boucaut. 1985. Immunoelectron microscopic study of fibronectin in gastrulating amphibian embryos. Cell Tissue Res. 239:75–80.

    Article  Google Scholar 

  • Darribèdre, T., K. Guida, H. Larjava, K.E. Johnson, K.M. Yamada, J.-P. Thiery, and J.-C. Boucaut. 1990. In vivo analyses of integrin β1subunit function in fibronectin matrix assembly. J. Cell Biol. 110:1813–1823.

    Article  Google Scholar 

  • Darribèdre, T., J.-F. Riou, K. Guida, A.-M. Duprat, J.-C. Boucaut, and J.-C. Beetschen 1991. A maternal-effect mutation disturbs extracellular matrix organization in the early Pleurodeles waltl embryo. Cell Tissue Res. 263:507–514.

    Article  Google Scholar 

  • Darribèdre, T., J.-F. Riou, D.L. Shi, M. Delarue, and J.-C. Boucaut. 1986. Synthesis and distribution of laminin-related polypeptides in early amphibian embryos. Cell Tissue Res. 246:45–51.

    Google Scholar 

  • Darribèdre, T., K.M. Yamada, K.E. Johnson, and J.-C. Boucaut. 1988. The 140 kD fibronectin receptor complex is required for mesodermal cell adhesion during gastrulation in the amphibian Pleurodeles waltlii. Dev. Biol. 126:182–194.

    Article  Google Scholar 

  • Delarue, M., T. Darribèdre, C. Aimar, and J.-C. Boucaut. 1985. Bufonid nucleocytoplasmic hybrids arrested at the early gastrula stage lack a fibronectin-containing fibrillar extracellular matrix. Wilhelm Roux’s Arch. Dev. Biol. 194:275–280.

    Article  Google Scholar 

  • DeSimone, D.W. and R.O. Hynes. 1988. Xenopus laevis integrins. Structural and evolutionary divergence of integrin β subunits. J. Biol. Chem. 263:5333–5340.

    PubMed  CAS  Google Scholar 

  • Johnson, K.E. 1984. Glycoconjugate synthesis during gastrulation in Xenopus laevis. Am. Zool. 24: 605–624.

    CAS  Google Scholar 

  • Johnson, K.E., J.-C. Boucaut, T. Darribèdre, and J.-F. Riou. 1987. Fibronectin in normal and gastrula arrested hybrid frog embryos. Anat. Rec. 218:68A.

    Google Scholar 

  • Johnson, K.E., T. Darribère, and J.-C. Boucaut. 1990. Cell adhesion to extracellular matrix in normal Rana pipiens gastrulae and in arrested hybrid gastrulae Rana pipiens ♀ Ă— Rana esculenta ♂.Dev. Biol. 137:86–99.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. 1975. Vital dye mapping of the gastrula and neurula of Xenopus laevis I. Prospective areas and morphogenetic movements in the superficial layer. Dev. Biol. 42:222–241.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. 1976. Vital dye mapping of the gastrula and neurula of Xenopus laevis II. Prospective areas and morphogenetic movements in the deep region. Dev. Biol. 51:118–137.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R.E. 1984. The cellular basis of gastrulation in Xenopus laevis: Postinvolutional convergence and extension. Am. Zool. 25:589–602.

    Google Scholar 

  • Keller, R.E. 1986. The cellular basis of amphibian gastrulation. p. 241–327. In:Developmental Biology: A Comprehensive Synthesis. Vol. 2. The Cellular Basis of Morphogenesis. L.W. Browder (Ed.). Plenum Press, New York.

    Google Scholar 

  • Keller, R.E., M. Danilchik, R. Gimlich, and J. Shin. 1985. Convergent extension by cell intercalation during gastrulation in Xenopus laevis. p. 111–141. In: Molecular Determinants of Animal Form. G.M. Edelman, (Ed.). Alan R. Liss, New York.

    Google Scholar 

  • Lee, G., R. Hynes, and M. Kirschner 1984. Temporal and spatial regulation of fibronectin in early Xenopus development. Cell 36:729–740.

    Article  PubMed  CAS  Google Scholar 

  • Lundmark, C. 1986. Role of bilateral zones of ingressing superficial cells during gastrulation ofAmbystoma mexicanum.J. Embrol. Exp. Morphol. 97:47–62.

    CAS  Google Scholar 

  • Mackie, E.J., R.P. Tucker, W. Halfter, R. Chiquet-Ehrismann, and Epperlein, H.H. 1988. The distribution of tenascin coincides with pathways of neural crest cell migration. Development 102:237–250.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. 1984. Cell locomotion and contact guidance in amphibian gastrulation. Am. Zool. 24:615–627.

    Google Scholar 

  • Nakatsuji, N. 1986. Presumptive mesodermal cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin. J. Cell Sci. 86:109–118.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N., A. Gould, and K.E. Johnson. 1982. Movement and guidance of migrating mesodermal cells in Ambystoma maculatum gastrulae. J. Cell Sci. 56:207–222.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N, K. Hashimoto, and M. Hayashi. 1985a. Laminin fibrils in newt gastrulae visualized by immunofluorescent staining. Dev. Growth & Differ. 27:639–643.

    Article  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1983a. Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells. J. Cell Sci. 59:43–60.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1983b. Comparative study of extracellular fibrils on the ectodermal layer in gastrulae of five amphibian species. J. Cell Sci. 59:61–70.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1984a. Experimental manipulation of a contact guidance system in amphibian gastrulation by mechanical tension. Nature 307:453–455.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsuji, N. and K.E. Johnson. 1984b. Substratum conditioning experiments using normal and hybrid frog embryos. J. Cell Sci. 68:49–67.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N, M.A. Smolira, and C.C. Wylie. 1985b. Fibronectin visualized by scanning electron microscopy immunocytochemistry on the substratum for cell migration in Xenopus laevis gastrula. Dev. Biol. 107:264–268.

    Article  PubMed  CAS  Google Scholar 

  • Riou, J.-F., D.-L. Shi, M. Chiquet, and J.-C. Boucaut. 1988. Expression of tenascin in response to neural induction in amphibian embryos. Development 104:511–524.

    CAS  Google Scholar 

  • Riou, J.-F., D.-L. Shi, M. Chiquet, and J.-C. Boucaut. 1990. Exogenous tenascin inhibits mesodermal cells migration during amphibian gastrulation. Dev. Biol. 137:305–317.

    Article  PubMed  CAS  Google Scholar 

  • Shi, D.-L., T. Darribère, K.E. Johnson, and J.-C. Boucaut. 1989. Initiation of mesodermal cell migration and spreading relative to gastrulation in the urodele amphibian Pleurodeles waltl gastrulae. Development 105:223–236.

    Google Scholar 

  • Shi, D.-L., M. Delarue, T. Darribère, J.-F. Riou, J.-C. Boucaut. 1987. Experimental analysis of the extension of the dorsal marginal zone in Pleurodeles waltl gastrulae. Development 100:147–161.

    PubMed  CAS  Google Scholar 

  • Smith, J.C. and G.M. Malacinski. 1983. The origin of the mesoderm in the anuran, Xenopus laevis, and a urodele, Ambystoma mexicanum. Dev. Biol. 98:250–254.

    Article  CAS  Google Scholar 

  • Thiery, J.P., J.L. Duband, and A. DelouvĂ©e. 1985. The role of cell adhesion in morphogenetic movements during early embryogenesis. p. 169–196. In:The Cell In Contact. G.M. Edelman and J.P. Thiery (Eds.). Wiley, New York.

    Google Scholar 

  • Vogt, W. 1929. Gestaltungsanalyse am Amphibienkeim mit Ortlicher Vitalfärbung. II. Teil. Gastrulation and Mesodermbildung bei Urodelen und Anuren. Wilhelm Roux’ Arch. Entwicklungsmech. Org. 120:384–706.

    Article  Google Scholar 

  • Weiss, P. 1945. Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization. J. Exp. Zool. 100:353–386.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K. M. 1983. Cell surface interactions with extracellular materials. Annu. Rev. Biochem. 52:761–799.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Boucaut, JC., Darribère, T., Shi, D.L., Riou, JF., Johnson, K.E., Delarue, M. (1991). Amphibian Gastrulation: The Molecular Bases of Mesodermal Cell Migration in Urodele Embryos. In: Keller, R., Clark, W.H., Griffin, F. (eds) Gastrulation. Bodega Marine Laboratory Marine Science Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6027-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6027-8_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6029-2

  • Online ISBN: 978-1-4684-6027-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics