Skip to main content

Abstract

Eukaryotic cells secrete proteins through both regulated and constitutive pathways (1). In the regulated pathway, exocytosis of stored material is coupled to an external stimulus which produces transient elevations in [Ca2+]i, cAMP or other secondary messengers (2, 3). Secretion is ultimately accomplished by the translocation of the exocytotic granule to the subcortical regions of the cell and the fusion of the cellular plasma membrane with the membranes of the secretory organelle. The process of regulated secretion has at least two distinct consequences. First, the rapid release of the contents of the storage granule generates locally high concentrations of peptides, proteins and other bioactive compounds in the vicinity of the secretory cell. These products may promote cell-cell interaction through the activation of target cells or the crosslinking of surface receptors. Second, the translocation of secretory granule membrane proteins to the plasma membrane of the secretory cell may provide new or additional binding sites for cellular adhesion.

to whom correspondence should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.L. Burgess and R.B. Kelly, Constitutive and regulated secretion of proteins, Annu. Rev. Cell Biol. 3: 243 (1987).

    Article  PubMed  CAS  Google Scholar 

  2. J.F. Harper, Stimulus-secretion coupling: Second messenger-regulated exocytosis, Advances in Second Messenger and Phosohoprotein Research, 22: 193 (1988).

    CAS  Google Scholar 

  3. T.J. Rink and D.E. Knight, Stimulus-secretion coupling: A perspective highlighting the contributions of Peter Baker, J. Exp. Biol. 139: 1 (1988).

    PubMed  CAS  Google Scholar 

  4. M.A. Gimbrone Jr. and M.P. Bevilacqua, 1988, Vascular endothelium: Functional modulation at the blood interface, in: “Endothelial Cell Biology,” N. Simionescu and M. Simionescu, eds., Plenum Press, New York.

    Google Scholar 

  5. J.M. Harlan, P.J. Thompson, R.R. Ross, and D.F. Bowen-Pope, Alpha-thrombin induces release of platelet-derived growth factor-like molecule(s) by cultured human endothelial cells, J. Cell. Biol. 103:1129(1986).

    Google Scholar 

  6. D.M. Stern, J. Brett, K. Harris, and P. Nawroth, Participation of endothelial cells in the protein C-protein S anticoagulant pathway: the synthesis and release of protein S, J. Cell Biol. 102: 1971 (1986).

    Article  PubMed  CAS  Google Scholar 

  7. E.A. Jaffe, L.W. Hoyer, R.L. Nachman, Synthesis of antihemophilic factor antigen by cultured human endothelial cells, J. Clin. Invest. 52: 2757 (1973).

    Article  PubMed  CAS  Google Scholar 

  8. R.L. Nachman, R. Levine, and E.A. Jaffe, Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes, J. Clin. Invest. 60:914, (1977).

    Google Scholar 

  9. R.I. Handin and D.D. Wagner, 1989, Molecular and cellular biology of von Willebrand factor, in: “Progress in Hemostasis and Thrombosis,” Vol. 9, B.S. Coller, ed., Saunders, Philadelphia.

    Google Scholar 

  10. T.S. Zimmerman and Z.M. Ruggeri, von Willebrand disease, Hum. Pathol. 18: 140 (1987).

    Article  PubMed  CAS  Google Scholar 

  11. K. Titani, S. Kumar, K. Takio, L.H. Ericsson, R.D. Wade, K. Ashida, K.A. Walsh, Michael W. Chopek, J.E. Sadler, and K. Fujikawa, Amino acid sequence of human von Willebrand factor, Biochemistry 25: 3171 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. D. Ginsburg, R.I. Handin, D.T. Bonthron, T.A. Donlon, G.A.P. Bruns, S.A. Latt, and S.H. Orkin, Human von Willebrand factor (vWf): Isolation of complementary DNA (cDNA) clones and chromosomal localization, Science 228: 1401 (1985).

    Article  PubMed  CAS  Google Scholar 

  13. D.C. Lynch, T.S. Zimmerman, C.J. Collins, M. Brown, M.J. Morin, E.H. Ling, and D.M. Livingston, Molecular cloning of cDNA for human von Willebrand factor: Authentication by a new method, Cell 41: 49 (1985).

    Article  PubMed  CAS  Google Scholar 

  14. J.E. Sadler, B.B. Shelton-Inloes, J.M. Sorace, J.M. Harlan, K. Titani, and E.W. Davie, Cloning and characterization of two cDNAs coding for human von Willebrand factor, Proc. Natl. Acad. Sci. USA 82: 6394 (1985).

    Article  PubMed  CAS  Google Scholar 

  15. C.L. Verweij, C.J.M. deVries, B. Distel, A.-J. van Zonneveld, A.G. van Kessel, J.A. van Mourik, and H. Pannekoek, Construction of cDNA coding for human von Willebrand factor using antibody probes for colony screening and mapping of the chromosomal gene, Nucleic Acids Res. 13: 4699 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. D.D. Wagner, Cell biology of von Willebrand factor, Annu. Rev. Cell Biol. 6: 217 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. D.D. Wagner, S.O. Lawrence, B.M. Ohlsson-Wilhelm, P.J. Fay, and V.J. Marder, Topology and order of formation of interchain disulfide bonds in von Willebrand factor, Blood 69: 27 (1987).

    PubMed  CAS  Google Scholar 

  18. D.D. Wagner and V.J. Marder, Biosynthesis of von Willebrand protein by human endothelial cells: Processing steps and their intracellular localization, J. Cell Biol. 99: 2123 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. D.D. Wagner, T. Mayadas, M. Urban-Pickering, B.H. Lewis, and V.J. Marder, Inhibition of disulfide bonding of von Willebrand protein by monensin results in small, functionally defective multimers, J. Cell Biol. 101: 112 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. M.C. Roarke, D.D. Wagner, V.J. Marder, and L.A. Sporn, Temperature-sensitive steps in the secretory pathway for von Willebrand factor in endothelial cells, Eur. J. Cell Biol. 48: 337 (1989).

    PubMed  CAS  Google Scholar 

  21. B.M. Ewenstein, M.J. Warhol, R.I. Handin, and J.S. Pober, Composition of the von Willebrand factor storage organelle (Weibel-Palade body) isolated from cultured human umbilical vein endothelial cells, J. Cell Biol. 104: 1423 (1987).

    Article  PubMed  CAS  Google Scholar 

  22. C.L. Verweij, M. Hart and H. Pannekoek, Expression of variant von Willebrand factor (vWf) cDNA in heterologous cells: Requirement of the propolypeptide in vWF multimer formation, EMBO J. 6: 2885 (1987).

    PubMed  CAS  Google Scholar 

  23. R.J. Wise, D.D. Pittman, R.I. Handin, R.J. Kaufman, and S.H. Orkin, The propeptide of von Willebrand factor independently mediates the assembly of von Willebrand multimers, Cell 52: 229 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. D.D. Wagner, T. Mayadas, and V.J. Marder, Initial glycosylation and acidic pH in the Golgi apparatus are required for multimerization of von Willebrand factor, J. Cell Biol. 102: 1320 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. T. Mayadas and D.D. Wagner, In vitro multimerization of von Willebrand factor is triggered by low pH: Importance of the propolypeptide and free sulfhydryls, J. Biol. Chem. 264: 13497 (1989).

    PubMed  CAS  Google Scholar 

  26. D.R. McCarroll, E.G. Levin, and R.R. Montgomery, Endothelial cell synthesis of von Willebrand antigen II, von Willebrand factor and von Willebrand factor/von Willebrand antigen II complex, J. Clin. Invest. 75: 1089 (1985).

    Article  PubMed  CAS  Google Scholar 

  27. R.R. Montgomery and T.S. Zimmerman, von Willebrand’s disease antigen II. A new plasma and platelet antigen deficient in severe von Willebrand’s disease, J. Clin. Invest. 61: 1498 (1978).

    Article  PubMed  CAS  Google Scholar 

  28. P.J. Fay, Y. Kawai, D.D. Wagner, D. Ginsburg, D. Bontron, B.M. Ohlsson-Wilhelm, S.I. Charin, G.N. Abraham, R.I. Handin, S.H. Orkin, R.R. Montgomery, and V.J. Marder, Propolypeptide of von Willebrand factor circulates in blood and is identical to von Willebrand factor antigen II, Science 232: 995 (1986).

    Article  PubMed  CAS  Google Scholar 

  29. D.D. Wagner, P.J. Fay, L.A. Sporn, S. Sinha, S.O. Lawrence, and V.J. Marder, Divergent fates of von Willebrand factor and its propolypeptide (von Willebrand antigen II) after secretion from endothelial cells, Proc. Natl. Acad. Sci. USA 84: 1955 (1987).

    Article  PubMed  CAS  Google Scholar 

  30. C. Loesberg, M.D. Gonsalves, J. Zandbergen, C. Willems, W.G. van Aken, H.V. Stel, J.A. van Mourik, and P.G. deGroot, The effect of calcium on the secretion of factor VIII-related antigen by cultured human endothelial cells, Biochim. Biophys. Acta. 763: 160 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. L.A. Sporn, V.J. Marder, and D.D. Wagner, Inducible secretion of large biologically potent von Willebrand factor multimers, Cell 46: 185 (1986).

    Article  PubMed  CAS  Google Scholar 

  32. P.K. Nguyen and P.L. Bockensted, Induction of von Willebrand factor synthesis in human umbilical vein endothelial cells by sodium butyrate, Blood 76;431a (1990).

    Google Scholar 

  33. H.M. Tsai, R.L. Nagel, V.B. Hatcher, and I.I. Sussman, Multimeric composition of endothelial cell-derived von Willebrand factor, Blood 73: 2074 (1989).

    PubMed  CAS  Google Scholar 

  34. C.R.M. Prentice, C.D. Forbes, and S.M. Smith, Rise of factor VIII after exercise and adrenalin infusion measured by immunological and biological techniques, Thromb. Res. 1: 493 (1972).

    Article  CAS  Google Scholar 

  35. Z.M. Ruggeri, P.M. Mannucci, R. Lombardi, A.B. Federici, and T.S. Zimmerman, Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: Implications for pathophysiology and therapy of von Willebrand’s disease subtypes, Blood 59: 1272 (1982).

    PubMed  CAS  Google Scholar 

  36. P.M. Mannucci, 1986, Desmopressin (DDAVP) for treatment of disorders of hemostasis, in: “Progress in Hemostasis and Thrombosis”, Vol. 8, B.S. Coller, ed., Grune & Stratton, New York.

    Google Scholar 

  37. J.D. Levine, J.M. Harlan, L.A. Harker, M.L. Joseph, and R.B. Counts, Thrombin-mediated release of factor VIII antigen from human umbilical vein endothelial cells in culture, Blood 60: 531 (1982).

    PubMed  CAS  Google Scholar 

  38. P.G. deGroot, M.D. Gonsalves, C. Loesberg, M.R. van Buul-Wortelboer, W.G. van Aken, and J.A. van Mourik, Thrombin-induced release of von Willebrand factor from endothelial cells is mediated by phospholipid methylation, J. Biol. Chem. 259: 13329 (1984).

    PubMed  Google Scholar 

  39. K.K. Hamilton and P.J. Sims, Changes in cytosolic Ca2+ associated with von Willebrand factor release in human endothelial cells exposed to histamine. J. Clin. Invest. 79: 600 (1987).

    Article  PubMed  CAS  Google Scholar 

  40. T.A. Brock, H.F. Dvorak, and D.R. Senger, Tumor-secreted vascular permeability factor increases cytosolic Ca2+ and von Willebrand factor release in human endothelial cells, Am. J. Pathol. 138:213(1991).

    Google Scholar 

  41. J.A. Ribes, C.W. Francis, and D.D. Wagner, Fibrin induces release of von Willebrand factor from endothelial cells, J. Clin. Invest. 79: 117 (1987).

    Article  PubMed  CAS  Google Scholar 

  42. J.A. Ribes, F. Ni, D.D. Wagner, and C.W. Francis, Mediation of fibrin-induced release of von Willebrand factor from cultured endothelial cells by the fibrin beta chain. J. Clin. Invest. 84: 435 (1989).

    Article  PubMed  CAS  Google Scholar 

  43. R. Hattori, K.K. Hamilton, R.P. McEver, and P.J. Sims, Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface, J. Biol. Chem. 264: 9053 (1989).

    PubMed  CAS  Google Scholar 

  44. B.J. Awbrey, J.C. Hoak, and W.G. Owen, Binding of human thrombin to cultured human endothelial cells, J. Biol. Chem. 254: 4092 (1979).

    PubMed  CAS  Google Scholar 

  45. P. Lollar and W.B. Owen, Evidence that the effects of thrombin on arachidonate metabolism in cultured human endothelial cells are not mediated by a high affinity receptor, J. Biol. Chem. 255: 8031 (1980).

    PubMed  CAS  Google Scholar 

  46. D. Rotrosen and J.I. Gallin, Histamine type I receptor occupancy increases endothelial cytosolic calcium, reduces F-actin, and promotes albumin diffusion across cultured endothelial monolayers, J. Cell Biol. 103: 2379 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. F.M Booyse, A.J. Quarfoot, J. Chediak, M.B. Stemerman, and T. Maciag, Characterization and properties of cultured human von Willebrand umbilical vein endothelial cells, Blood 58: 788 (1981).

    PubMed  CAS  Google Scholar 

  48. E.G.D. Tuddenham, J. Lazarchich, and L.W. Hoyer, Synthesis and release of factor VIII by cultured human endothelial cells, Brit. J. Haematol. 47: 617 (1981).

    Article  CAS  Google Scholar 

  49. J.H. Reinders, R. C. Vervoorn, C.L. Verweij, J.A. van Mourik, and P.G. deGroot, Perturbation of cultured human vascular endothelial cells by phorbol ester or thrombin alters the cellular von Willebrand factor distribution, J. Cell Phvsiol. 133: 79 (1987).

    Article  CAS  Google Scholar 

  50. T. Mayadas, D.D. Wagner, and P.J. Simpson, von Willebrand factor biosynthesis and partititoning between constitutive and regulated pathways of secretion after thrombin stimulation, Blood 73: 706 (1989).

    PubMed  CAS  Google Scholar 

  51. E.R. Weibel and G.E. Palade, New cytoplasmic components in arterial endothelia, J. Cell Biol. 23: 101 (1964).

    Article  PubMed  CAS  Google Scholar 

  52. A.A. Trillo and R.W. Prichard, Early endothelial changes in experimental primate atherosclerosis, Lab. Invest. 41: 294 (1979).

    PubMed  CAS  Google Scholar 

  53. P. Kumar, A. Erroi, A. Sattar, and S. Kumar, Weibel-Palade bodies as a marker for neovascularization induced by tumor and rheumatoid angiogenesis factors, Cancer Res. 45: 4339 (1985).

    PubMed  CAS  Google Scholar 

  54. A. Sengel and P. Stoebner, Golgi origin of tubular inclusions in endothelial cells, J. Cell Biol. 44: 223 (1970).

    Article  PubMed  CAS  Google Scholar 

  55. D.D. Wagner, J.B. Olmsted, and V.J. Marder, Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells, J. Cell Biol. 95: 355 (1982).

    Article  PubMed  CAS  Google Scholar 

  56. M. Hormia, V.P. Lehto, and I. Virtanen, Intracellular localization of factor VIII-related antigen and fibronectin in cultured human endothelial cells: Evidence for divergent routes of intracellular translocation, Eur. J. Cell Biol. 33: 217 (1984).

    PubMed  CAS  Google Scholar 

  57. M.J. Warhol and J.M. Sweet, The ultrastructural localization of von Willebrand factor in endothelial cells, Am. J. Pathol. 117: 310 (1984).

    PubMed  CAS  Google Scholar 

  58. H. Kagawa, S. Fujimoto, H. Ueda, and K. Hamasaki, Immunocytochemical localization of factor VHI-related antigen in human umbilical vein, J. VOEH 7: 365 (1985).

    CAS  Google Scholar 

  59. J.H. Reinders, P.G. de Groot, M.D. Gonsalves, J. Zandbergen, C. Loesberg, and J.A. van Mourik, Isolation of a storage and secretory organelle containing von Willebrand protein from cultured human endothelial cells, Biochim. Biophys. Acta 804: 361 (1984).

    Article  PubMed  CAS  Google Scholar 

  60. J.H. Reinders, P.G. de Groot, J. Dawes, N.R. Hunter, H.A.A. van Heugten, J. Zandbergen, M.D. Gonsalves, and J.A. van Mourik, Composition of secretion and subcellular localization of von Willebrand protein with that of thrombospondin and fibronectin in cultured human vascular endothelial cells, Biochim. Biophys. Acta 884: 306 (1985).

    Article  Google Scholar 

  61. J. Loscalzo, M. Fisch, and R.I. Handin, Solution studies of the quaternary structure and assembly of human von Willebrand factor, Biochemistry 24: 4468 (1985).

    Article  PubMed  CAS  Google Scholar 

  62. R.P. McEver and M.N. Martin, A monoclonal antibody to a membrane glycoprotein binds only to activated platelets, J. Biol. Chem. 259: 9799 (1984).

    PubMed  CAS  Google Scholar 

  63. S. Hsu-Lin, C.L. Berman, B.C. Furie, D. August, B. Furie, A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets, J. Biol. Chem. 259: 9121 (1984).

    PubMed  CAS  Google Scholar 

  64. R.P. McEver, J.H. Beckstead, K.L. Moore, L. Marshall-Carlson, and D.F. Bainton, GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endotheial cells and is localized in Weibel-Palade bodies, J. Clin. Invest. 84: 92 (1989).

    Article  PubMed  CAS  Google Scholar 

  65. R. Bonfanti, B.C. Furie, B. Furie, and D.D. Wagner, PADGEM (GMP-140) is a component of Weibel-Palade bodies of human endothelial cells, Blood 73: 1109 (1989).

    PubMed  CAS  Google Scholar 

  66. G.I. Johnston, R.G. Cook, and R.P. McEver, Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation, Cell 56: 1033 (1989).

    Article  PubMed  CAS  Google Scholar 

  67. M.P. Bevilacqua, S. Stengelin, M.A. Gimbrone, Jr, and B. Seed, Endothelial leukocyte adhesion molecule 1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins, Science 243: 1160 (1989).

    Article  PubMed  CAS  Google Scholar 

  68. L.A. Lasky, M.S. Singer, T.A. Yednock, D. Dowbenko, C. Fennie, H. Rodriguez, T. Nguyen, S. Stachel, and S.D. Rosen, Cloning of a lymphocyte homing receptor reveals a lectin domain, Cell 56: 1045 (1989).

    Article  PubMed  CAS  Google Scholar 

  69. J.M. McNiff and J. Gil, Secretion of Weibel-Palade bodies observed in extra-alveolar vessels of rabbit lung, J. Appl. Phvsiol. 54: 1284 (1983).

    Article  CAS  Google Scholar 

  70. R. Hattori, K.K. Hamilton, R.D. Fugate, R.P. McEver, and P.J. Sims, Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140, J. Biol. Chem. 264: 7768 (1989).

    PubMed  CAS  Google Scholar 

  71. L.A. Fitzgerald, I.F. Charo, and D.R. Phillips, Human and bovine endothelial cells synthesize membrane proteins similar to human platelet glycoproteins IIb and IIIa, J. Biol. Chem. 260: 10893 (1985).

    PubMed  CAS  Google Scholar 

  72. L.A. Sporn, V.J. Marder, and D.D. Wagner, Differing polarity of the constitutive and regulated secretory pathways for von Willebrand factor in endothelial cells, J. Cell. Biol. 108: 1283 (1989).

    Article  PubMed  CAS  Google Scholar 

  73. S.H. Tannenbaum, M.E. Rick, B. Shafer, and H.R. Gralnick, Subendothelial matrix of cultured endothelial cells contains fully processed high molecular weight von Willebrand factor, J. Lab. Clin. Med. 113:372(1989).

    Google Scholar 

  74. M.J. Berridge, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220: 345 (1984).

    PubMed  CAS  Google Scholar 

  75. E.A. Jaffe, J. Grulich, B.B. Weksler, G. Hampel, and K. Watanabe, Correlation between thrombin-induced prostacylin production and inositol trisphosphate and cytosolic free calcium levels in cultured human endothelial cells, J. Biol. Chem. 262: 8557 (1987).

    PubMed  CAS  Google Scholar 

  76. T.A. Brock and E.A. Capasso, Thrombin and histamine activate phospholipase C in human endothelial cells via a phorbol ester-sensitive pathway, J. Cell Phvsiol. 136: 54 (1988).

    Article  CAS  Google Scholar 

  77. D.M. Stern, P.P. Nawroth, W. Kisiel, D. Handley, M. Drillings, and J. Bartos, A cogulation pathway on bovine aortic segments leading to the generation of Factor Xa and thrombin, J. Clin. Invest. 74:1910(1984).

    Google Scholar 

  78. D.M. Stern, P.P. Nawroth, D. Handley, and W. Kisiel, An endothelial cell-dependent pathway of coagulation, Proc. Natl. Acad. Sci. USA 82: 2523 (1985).

    Article  PubMed  CAS  Google Scholar 

  79. T.J. Hallam, R. Jacob, and J.E. Merritt, Evidence that agonists stimulate bivalent-cation influx into human endothelial cells, Biochem. J. 255: 179 (1988).

    PubMed  CAS  Google Scholar 

  80. K.A. Birch, G.B. Zavoico, J.S. Pober, and B.M. Ewenstein, A direct role of calcium and a regulatory role of protein kinase C (PKC) in thrombin-stimulated von Willebrand factor (vWF) secretion by human umbilical vein endothelial cells (EC), FASEB J. 4:481 A (1990).

    Google Scholar 

  81. K.E. Kamm and J.T. Stull, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Ann. Rev. Pharmacol. Toxicol. 25: 593 (1985).

    Article  CAS  Google Scholar 

  82. M. Inagaki, S. Kawamoto, and H. Hidaka, Serotonin secretion from human platelets may be modified by Ca2+-activated phospholipid-dependent myosin phosphorylation, J. Biol. Chem. 259: 14321 (1984).

    PubMed  CAS  Google Scholar 

  83. M. Saitoh, M. Naka, and H. Hidaka, The modulatory role of myosin light chain phosphorylation in human platelet activation, Biochem. Biophys. Res. Commun. 140: 280 (1986).

    Article  PubMed  CAS  Google Scholar 

  84. R.B. Wysolmerski and D. Lagunoff, Involvement of myosin light-chain kinase in endothelial cell retraction, Proc. Natl. Acad. Sci. USA 87: 16 (1990).

    Article  PubMed  CAS  Google Scholar 

  85. J.J. Lynch, T.J. Ferro, F.A. Blumenstock, A.M. Brockenauer, and A.B. Malik, Increased endothelial albumin permeability mediated by protein kinase C activation, J. Clin. Invest. 85: 1991 (1990).

    Article  PubMed  CAS  Google Scholar 

  86. J.E. Niedel and P.J. Blackshear, 1986, Protein kinase C, in: “Phosphoinositides and Receptor Mechanisms,” J.W. Putney, ed., Alan R. Liss.

    Google Scholar 

  87. B.C. Jacobson, J.S. Pober, J.W. Fenton, and B.M. Ewenstein, Thrombin and Histamine rapidly stimulate the phosphorylation of the Myristoylated alanine-rich C kinase substrate (MARCKS) in human umbilical vein endothelial cells: Evidence for distinct patterns of protein kinase activation, submitted.

    Google Scholar 

  88. S. Sinha and D.D. Wagner, Intact microtubules are necessary for complete processing, storage and regulated secretion of von Willebrand factor by endothelial cells, Eur. J. Cell Biol. 43: 377 (1987).

    PubMed  CAS  Google Scholar 

  89. D. Aunis and M.-F. Bader, The cytoskeleton as a barrier to exocytosis in secretory cells, J. Exp. Biol. 139: 253 (1988).

    PubMed  CAS  Google Scholar 

  90. A.B. Federici, R. Bader, S. Pagani, M.L. Colibretti, L. De Marco, and P.M. Mannucci, Binding of von Willebrand factor to glycoproteins Ib and IIb/IIIa complex: affinity is related to multimeric size, Brit. J. Haematol. 73: 93 (1989).

    Article  CAS  Google Scholar 

  91. L.A. Sporn, V.J. Marder, and D.D. Wagner, von Willebrand factor released from Weibel-Palade bodies binds more avidly to extracellular matrix than that secreted constitutively, Blood 69: 1531 (1987).

    PubMed  CAS  Google Scholar 

  92. J.L. Moake, N.A. Turner, N.A. Stathopoulos, L.H. Nolasco, and J.D. Heliums, Involvement of large plasma von Willebrand factor multimers and unusually large von Willebrand factor multimers and unusually large von Willebrand factor forms derived from endothelial cells in shear-stress induced platelet aggregation, J. Clin. Invest. 78: 1456 (1986).

    Article  PubMed  CAS  Google Scholar 

  93. J.-G. Geng, M.P. Bevilacqua, K.L. Moore, T.M. Mclntyre, S.M. Prescott, J.M. Kim, G.A. Bliss, G.A. Zimmerman, and R.P. McEver, Rapid neutrophil adhesion to activated endothelium mediated by GMP-140, Nature 343: 757 (1990).

    Article  PubMed  CAS  Google Scholar 

  94. J.R. Gamble, M.P. Skinner, M.C. Berndt, and M.A. Vadas, Prevention of activated neutrophil adhesion to endothelium by soluble adhesion proteins GMP140, Science 249: 414 (1990).

    Article  PubMed  CAS  Google Scholar 

  95. K.L. Moore, A. Varki, and R.P. McEver, GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction, J. Cell. Biol. 112: 491 (1991).

    Article  PubMed  CAS  Google Scholar 

  96. L. Osborn, Leukocyte adhesion to endothelium in inflammation, Cell 62: 3 (1990).

    Article  PubMed  CAS  Google Scholar 

  97. G.A. Zimmerman, T.M. Mclntyre, M. Mehra, and S.M. Prescott, Endothelial cellassociated platelet-activating factor: a novel mechanism for signaling intercellular adhesion, J. Cell Biol. 110:529(1990).

    Google Scholar 

  98. M.A. Boogaerts, G. Vercelotti, C. Roelant, S. Malbrain, R.L. Verwilghen, and H.S. Jacob, Platelets augment granulocyte aggregation and cytotoxicity: Uncovering of their effects by improved cell separation techniques using Percoll gradients, Scand. J. Haematol. 37: 229 (1986).

    Article  PubMed  CAS  Google Scholar 

  99. A.J. Marcus, M.J. Broekman, L.B. Safier, H.L. Ullman, N. Islam, C.N. Serhan, L.E. Rutherford, H.M. Korchak, and G. Weissmann, Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro, Biochem. Biophys. Res. Commun. 109: 130 (1982).

    Article  PubMed  CAS  Google Scholar 

  100. J.A. Maclouf and R.C. Murphy, Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4, J. Biol. Chem. 263: 174 (1988).

    PubMed  CAS  Google Scholar 

  101. E. Larsen, A. Celi, G.E. Gilbert, B.C. Furie, J.K. Erban, R. Bonfanti, D.D. Wagner, and B. Furie, PADGEM protein: A receptor that mediates the interaction of activated platelets with neutrophils and monocytes, Cell 59: 305 (1989).

    Article  PubMed  CAS  Google Scholar 

  102. S.A. Hamburger and R.P. McEver, GMP-140 mediates adhesion of stimulated platelets to neutrophils, Blood 75: 550 (1990).

    PubMed  CAS  Google Scholar 

  103. K.D. Patel, G.A. Zimmerman, S.M. Prescott, R.P. McEver, and T.M. Mclntyre, Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils, J. Cell Biol. 112:749(1991).

    Google Scholar 

  104. R.P. Hebbel, M.A.B. Boogaerts, J.W. Eaton, and M.H. Steinberg, Erythrocyte adherence to endothelium in sickle-cell anemia: A possible determinant of disease severity, N. Engl. J. Med. 302: 992 (1980).

    Article  PubMed  CAS  Google Scholar 

  105. N. Mohandas and E. Evans, Sickle erythrocyte adherence to vascular endothelium: Morphologic correlates and the requirement for divalent cations and collagen-binding proteins, J. Clin. Invest. 76: 1605 (1985).

    Article  PubMed  CAS  Google Scholar 

  106. G.A. Barabino, L.V. McIntire, S.G. Eskin, D.A. Sears, and M. Udden, Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow, Blood 70: 152 (1987).

    PubMed  CAS  Google Scholar 

  107. D.K. Kaul, M.E. Fabry, and R.L. Nagel, Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: Pathophysiological implications. Proc. Natl. Acad. Sci. USA 86: 3356 (1989).

    Article  PubMed  CAS  Google Scholar 

  108. T.M. Wick, J.L. Moake, M.M. Udden, S.G. Eskin, D.A. Sears, and L.V. Mclntire, Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow, J. Clin. Invest. 80: 905 (1987).

    Article  PubMed  CAS  Google Scholar 

  109. H.M. Tsai, I.I. Sussman, R.L. Nagel, and D.K. Kaul, Desmopressin induces adhesion of normal human erythrocytes to the endothelial surfaces of a perfused microvascular preparation, Blood 75: 251 (1990).

    Google Scholar 

  110. T.M. Wick, J.L. Moake, M.M. Udden, and L.V. Mclntyre, Unusually large (UL) vWF multimers bind to GPIb-like and integrin receptors on sickle and young non-sickle RBC and on endothelial cells (EC): A mechanism for sickle and other young RBC adhesion to EC, Blood 72:76a (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ewenstein, B.M., Jacobson, B.C., Birch, K.A. (1991). Regulated Secretion in Vascular Endothelium. In: Wong, P.YK., Serhan, C.N. (eds) Cell-Cell Interactions in the Release of Inflammatory Mediators. Advances in Experimental Medicine and Biology, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6024-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6024-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6026-1

  • Online ISBN: 978-1-4684-6024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics