Neutrophil Adhesion to Glomerular Mesangial Cells: Regulation by Lipoxygenase-Derived Eicosanoids

  • Hugh R. Brady
  • Mark D. Denton
  • Barry M. Brenner
  • Charles N. Serhan
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)


Glomerulonephritis (GN) is the leading cause of end-stage renal failure (1). While the pathophysiology of this condition is incompletely understood, polymorphonuclear leukocyte (PMN) and monocyte infiltration of the glomerulus is a characteristic early pathologic finding in many forms of human and experimental GN (reviewed in refs.1–4). For example, an intense PMN infiltrate is a prominant feature of several primary glomerular diseases in man, such as acute diffuse proliferative and crescentic GN (1–5, e.g. Fig.1), and also characterizes proliferative GN complicating systemic diseases, such as systemic lupus erythematosus (9). In addition, PMN infiltration is a common finding during the heterologous phase of experimental nephrotoxic serum nephritis, and glomerular hypercellularity and proteinuria can be abrogated in this model by prior depletion of phagocytes (6). Monocytic infiltration of the glomerulus has also been identified by morphologic and immunohistochemical techniques in clinical forms of postinfectious and crescentic GN (1–4), and the accelerated model of experimental nephrotoxic serum nephritis (1–4, 7, 8). In the latter condition, glomerular monocyte infiltration parallels the development of proteinuria, and, here also, prior depletion of monocytes by irradiation abrogates the development of proteinuria and glomerular hypercellularity (7). The mechanism(s) involved in leukocyte entrapment within the glomerulus in acute GN have not been fully established.


Mesangial Cell Glomerular Mesangial Cell Leukocyte Adhesion Molecule Lipoxygenase Product Rapidly Progressive Glomerulonephritis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.B. Wilson and F.J. Dixon, The renal response to immunological injury, in “The Kidney,” B.M. Brenner and F.C. Rector, eds., Saunders, Philadelphia, PA (1991).Google Scholar
  2. 2.
    R.J. Glassock, A.H. Cohen, S. Adler, and H. Ward, Primary glomerular diseases, in “The Kidney,” B.M. Brenner and F.C. Rector, eds., Saunders, Philadelphia, PA (1991).Google Scholar
  3. 3.
    A.A. Eddy and A.F. Michael, Immunopathogenetic mechanisms of glomerular injury, in “Renal Pathology,” C.C. Tisher and B.M. Brenner, eds., J.B. Lippincott, Philadelphia, PA, 111–155 (1990).Google Scholar
  4. 4.
    E.J. Lewis, T. Cavallo, J.T. Harrington, and R.S. Cotran, An immunopathologic study of rapidly progressive glomerulonephritis in the adult, Human Pathol. 2: 185 (1971).CrossRefGoogle Scholar
  5. 5.
    A.J. Fish, R.C. Herdman, A. F. Michael, R.J. Pickering, and R.A. Good, Epidemic acute glomerulonephritis associated with type 49 streptococcal pyoderma. II. Correlative study of light, immunofluorescent, and electron microscopic findings, Am.J. Med. 48: 28 (1970).PubMedCrossRefGoogle Scholar
  6. 6.
    CG. Cochrane, E.R. Unanue, and F.J. Dixon. A role of polymorphonuclear leukocytes and complement in nephrotoxic nephritis, J. Exp. Med. 122: 99 (1978).CrossRefGoogle Scholar
  7. 7.
    G.F. Schreiner, R.S. Cotran, V. Pardo, and E.R. Unanue. A mononuclear cell component in experimental immunological glomerulonephritis. J. Exp. Med. 147: 369 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    H.M. Fillit and J.B. Zabriskie, Cellular immunology in glomerulonephritis. Am. J. Pathol. 109: 369 (1978).Google Scholar
  9. 9.
    M. Kashgarian and J.P. Hayslett. Renal involvement in systemic lupus erythematosus, in: “Renal Pathology,” C.C. Tisher and B.M. Brenner eds., J.B. Lippincott, Philadelphia, PA, 380 (1990).Google Scholar
  10. 10.
    M. Patarroya and M.W. Makgoba, Leukocyte adhesion to cells: molecular basis, physiological relevance, and abnormalities, Scand. J. Immunol, 30: 129 (1989).Google Scholar
  11. 11.
    H.R. Brady, U. Persson, B.J. Ballermann, Barry M. Brenner, and Charles N. Serhan, Leukotrienes stimulate neutrophil adhesion to mesangial cells: modulation with lipoxins, Am. J. Physiol. 259: F809 (1989).Google Scholar
  12. 12.
    E.A. Lianos, Eicosanoids and the modulation of glomerular immune injury, Kidney Int. 35: 985 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    C.N. Serhan, HPLC separation and determination of the lipoxins, in “Methods in Enzymology: Arachidonate-Related Lipid Mediators,” R.C. Murphy and F.A. Fitzpatrick, eds., academic, Orlando FL (in press).Google Scholar
  14. 14.
    C.W. Smith, S.D. Marlin, R. Rothlein, C. Toman, and C. Anderson, Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro, J. Clin. Invest. 83: 637 (1989).CrossRefGoogle Scholar
  15. 15.
    K. F. Badr, G.F. Schreiner, M. Wasserman, and I. Ishikawa, Preservation of glomerular capillary ultrafiltration coefficient during rat nephrotoxic serum nephritis by a specific leukotriene D4 receptor antagonist, J. Clin. Invest. 81: 1702 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    M.A. Gimbrone, A.F. Brock, and A.I. Schafer, Leukotriene B4 stimulates polymorphonuclear leukocyte adhesion to cultured vascular endothelial cells. J. Clin. Invest. 74: 1552 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    R.L. Hoover, M.J. Karnovsky, K.F. Austen, E.J. Corey, and R.A. Lewis. Leukotriene B4 action on endothelium mediates augmented neutrophil/endothelial adhesion. Proc. Natl. Acad. Sci. USA 81: 2191 (1984).PubMedCrossRefGoogle Scholar
  18. 18.
    T.M. Mclntyre, G.A. Zimmerman, and S.M. Prescott. Leukotriene C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils, Proc. Natl. Acad. Sci. USA 83: 2204 (1986).CrossRefGoogle Scholar
  19. 19.
    E.J. Goetzl, L.L. Brindley, and D.W. Goldman, Enhancement of human neutrophil adherence by synthetic leukotriene constituents of the slow reacting substance of anaphylaxis, Immunology 50: 35 (1983).PubMedGoogle Scholar
  20. 20.
    R.M. McMillan, S.J. Foster, and P.A. Dieppe, Leukotriene B4 metabolism in human leukocytes: fact or artifact? Agents Actions 21: 355 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    B. Samuelsson, S-E. Dahlen, J.A. Lindgren, C.A. Rouzer, and C.N. Serhan, Leukotrienes and lipoxins: structures, biosynthesis, and biological effects, Science Wash. DC 237: 1171 (1987).Google Scholar
  22. 22.
    M.S. Simonson, and M.J. Dunn, Leukotriene C4 and D4 contract rat glomerular mesangial cells. Kidney Int. 30: 524 (1986).PubMedCrossRefGoogle Scholar
  23. 23.
    K.F. Badr, D.K. DeBoer, M. Schwartzberg, and C.N. Serhan, Lipoxin A4 antagonizes cellular and in vivo actions of leukotriene D4 in rat glomerular mesangial cells: evidence for competition at a common receptor, Proc. Natl. Acad. Sci. USA 86: 38 (1989).CrossRefGoogle Scholar
  24. 24.
    R. Barnett, P. Golwasser, L.A. Scharschmidt, and D. Schlondorff, Effect of leukotrienes on isolated rat glomeruli and cultured mesangial cells. Am. J. Physiol. 250: F838 (1986).Google Scholar
  25. 25.
    T.H. Lee, C.E. Horton, U. Kyan-Aung, D. Haskard, A.E.J. Crea, and W. Spur, Lipoxin A4 and lipoxin B4 inhibit chemotactic responses of human neutrophils stimulated ny LTB4 and N-formyl-L-Methionyl-L-leucyl-L-phenylalanine, Clin. Sci. Lond. 77: 195 (1989).PubMedGoogle Scholar
  26. 26.
    P. Hedqqvist, J. Raud, U. Palmertz, J. Haeggstrom, K.C. Nicolau, S-E. Dahlen, Lipoxin A4 inhibits leukotriene B4-induced inflammation in the hamster cheek pouch, Acta Physiol. Scand. 137: 571 (1989).CrossRefGoogle Scholar
  27. 27.
    W.G. Couser, Mediation of immune glomerular injury, J.A.S.N. 1: 13 (1990).Google Scholar
  28. 28.
    C.N. Serhan, and K-A. Sheppard, Lipoxin formation during human neutrophil-platelet interactions: evidence for the transformation of leukotriene A4 by platelet 12-lipoxygenase in vitro, J. Clin. Invest. 85: 772 (1990).PubMedCrossRefGoogle Scholar
  29. 29.
    S-E. Dahlen, L. Franzen, J. Raud et al, Actions of lipoxin A4 and related compounds on smooth muscle preparations and on the microcirculation in vivo, Adv. Exper. Med. Biol. 229: 107 (1987).Google Scholar
  30. 30.
    M.A. Arnaout, Structure and function of the leukocyte adhesion molecules CD11/CD18, Blood 75: 1037 (1990).Google Scholar
  31. 31.
    T.A. Springer, Adhesion receptors of the immune system. Nature 346: 425 (1990).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Garrick, S.Y. Shen, S. Ogunc, P.Y-K. Wong, Transformation of leukotriene A4 to lipoxins by rat kidney mesangial cells, Biochem. Biophys. Res. Commun. 162: 626 (1989).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Hugh R. Brady
    • 1
  • Mark D. Denton
    • 1
  • Barry M. Brenner
    • 1
  • Charles N. Serhan
    • 2
  1. 1.Renal Division, Department of MedicineBrigham & Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Hematology Division, Department of MedicineBrigham & Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations