Skip to main content

Products of Inflammatory Cells Synergistically Enhance Superoxide Production by Phagocytic Leukocytes

  • Chapter
Cell-Cell Interactions in the Release of Inflammatory Mediators

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 314))

Abstract

Superoxide (O 2 ) is a major component of the oxygen-dependent antimicrobial and cytocidal arsenal of neutrophils 1, 2. The oxidase system that generates this substance is dormant and disassembled in unstimulated cells and consists of both membrane-bound and soluble (“cytosolic factors”) components3, 4. The known membrane-components are a low-potential, heterodimeric b-cytochrome5, 6 and a ras-related GTP-binding protein7. The most thoroughly characterized cytosolic factors are proteins with molecular masses of 47 (p47) and 67kDa8–11. Upon stimulation of neutrophils, there is a translocation of the soluble components to the plasmalemma where the oxidase is assembled12, 13 (Figure 1). This assembly requires the presence of the b-cytochrome12, 14 and is associated with and/or organized by cytoskeletal proteins15. The intact system produces O 2 according to the following stoichiometry:

$${\rm{NAPDH + 2}}{{\rm{0}}_{\rm{2}}} \to {\rm{2}}{{\rm{0}}_{\rm{2}}}^{\rm{ - }}{\rm{ + NAD}}{{\rm{P}}^{\rm{ + }}}{\rm{ + 2}}{{\rm{H}}^{\rm{ + }}}{\rm{.}}$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Badwey, and M. L. Karnovsky, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem. 49: 695 (1980).

    Article  PubMed  CAS  Google Scholar 

  2. J. T. Curnutte and B. M. Babior, Chronic granulomatous disease, Adv. Human Genet. 16: 229 (1987).

    CAS  Google Scholar 

  3. R. A. Heyneman and R. E. Vercauteren, Activation of a NADPH-oxidase from horse polymorphonuclear leukocytes in a cell-free system, J. Leukocyte Biol. 36: 751 (1984).

    PubMed  CAS  Google Scholar 

  4. Y. Bromberg and E. Pick, Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell free system derived from macrophages, Cell Immunol. 88: 213 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. A. W. Segal and O. T. Jones, Novel cytochrome b system in phagocytic vacuoles from human granules, Nature 276: 515 (1978).

    Article  PubMed  CAS  Google Scholar 

  6. C. A. Parkos, R. A. Allen, C. G. Cochrane, and A. J. Jesaitis, Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000, J. Clin. Invest. 80: 73 (1987).

    Article  Google Scholar 

  7. M. T. Quinn, C. A. Parkos, L. Walker, S. H. Grkin, M. C. Dinauer, and A. J. Jesaitis, Association of a Ras-related protein with cytochrome b of human neutrophils, Nature 342: 198 (1989).

    Article  PubMed  CAS  Google Scholar 

  8. B. D. Volpp, W. M. Nauseef, and R. A. Clark, Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease, Science 242: 1295 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. H. Nunoi, D. Rotrosen, J. I. Gallin, and H. L. Malech, Two forms of autosomal chronic granulomatous disease are deficient in distinct neutrophil cytosol factors, Science 242: 1298 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. B. D. Volpp, W. M. Nauseef, J. E. Donelson, D. R. Moser, and R. A. Clark, Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase, Proc. Natl. Acad. Sci. USA 86: 7195 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. T. L. Leto, K. J. Lomax, B. D. Volpp, H. Nunoi, J. M. G. Sechler, W. M. Nauseef, R. A. Clark, J. I. Gallin, and H. L. Malech, Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src, Science 248: 727 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. P. G. Heyworth, C. F. Shrimpton, and A. W. Segal, Localization of the 47kDa phosphoprotein involved in the respiratory burst oxidase of phagocytic cells, Biochem. J. 260: 243 (1989).

    PubMed  CAS  Google Scholar 

  13. R. A. Clark, B. D. Volpp, K. G. Leidal, and W. M. Nauseef, Two cytosolic components of the human respiratory burst oxidase translocate to the plasma membrane during cell activation, J. Clin. Invest. 85: 714 (1990).

    Article  PubMed  CAS  Google Scholar 

  14. D. Rotrosen, M. E. Kleinberg, H. Nunoi, T. Leto, J. I. Gallin, and H. L. Malech, Evidence for a functional cytoplasmic domain of phagocyte oxidase cytochrome b558, J. Biol. Chem. 265: 8745 (1990).

    PubMed  CAS  Google Scholar 

  15. M. T. Quinn, C. A. Parkos, and A. J. Jesaitis, The lateral organization of components of the membrane skeleton and superoxide generation in the plasma membrane of stimulated human neutrophils, Biochim. Biophys. Acta 987: 83 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. J. A. Badwey, J. M. Robinson, P. G. Heyworth, and J. T. Curnutte, 1, 2-Dioctanoylglycerol can stimulate neutrophils by different mechanisms. Evidence for a pathway that does not involve phosphorylation of p47, J. Biol. Chem. 264: 20676 (1989).

    PubMed  CAS  Google Scholar 

  17. J. M. Robinson, P. G. Heyworth, and J. A. Badwey, Utility of staurosporine in uncovering differences in the signal transduction pathways for superoxide production in neutrophils, Biochim. Biophys. Acta 1052: 299 (1990).

    Article  Google Scholar 

  18. A. W. Segal, P. G. Heyworth, S. Cockroft, and M. M. Barrowman, Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a Mr-44,000 protein, Nature 316: 547 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. P. G. Heyworth, and A. W. Segal, Further evidence for involvement of a phosphoprotein in the respiratory burst oxidase of human neutrophils, Biochem. J. 239: 723 (1986).

    PubMed  CAS  Google Scholar 

  20. N. Okamura, J. T. Curnutte, R. L. Roberts, and B. M. Babior, Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils: defects in the phosphorylation of a group of closely related 48-kDa proteins in two forms of chronic granulomatous disease, J. Biol. Chem. 263: 6777 (1988).

    PubMed  CAS  Google Scholar 

  21. K. J. Lomax, T. L. Leto, H. Nunoi, J. I. Gallin, and H. L. Malech, Recombinant 47 kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease, Science 246: 987 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. C. House, R. E. Wettenhall, and B. E. Kemp, The influence of basic residues on the substrate specificity of protein kinase C, J. Biol. Chem. 262: 772 (1987).

    PubMed  CAS  Google Scholar 

  23. D. Rotrosen and T. L. Leto, Phosphorylation of neutrophil 47kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events, J. Biol. Chem. 265: 19910 (1990).

    PubMed  CAS  Google Scholar 

  24. R. H. Weisbart, D. W. Golde, S. C. Clark, G. G. Wong, and J. C. Gasson, Human granulocyte-macrophage colony stimulating factor is a neutrophil activator, Nature 314: 361 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. G. Berton, L. Zeni, M. A. Cassatella, and F. Rossi, Gamma interferon is able to enhance the oxidative metabolism of human neutrophils, Biochem. Biophys. Res. Commun. 138: 1276 (1986).

    Article  PubMed  CAS  Google Scholar 

  26. K. Ishida, K. Takeshige, and S. Minakami, Endothelin-1 enhances superoxide generation of human neutrophils stimulated by the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine, Biochem. Biophys. Res. Commun. 173: 496 (1990).

    Article  PubMed  CAS  Google Scholar 

  27. L. C. McPhail, C. C. Clayton, and R. Snyderman, The NADPH-oxidase of human polymorphonuclear leukocytes. Evidence for regulation by multiple signals. J. Biol. Chem. 259: 5768 (1984).

    PubMed  CAS  Google Scholar 

  28. J. T. O’Flaherty, J. D. Schmitt, and R. L. Wykle, Interactions of arachidonate metabolism on protein kinase C in mediating neutrophil function. Biochem. Biophys. Res. Commun. 127: 916 (1985).

    Article  PubMed  Google Scholar 

  29. J. T. O’Flaherty, J. F. Redman, D. P. Jacobson, and A. G. Rossi, Stimulation and priming of protein kinase C translocation by a Ca2+ transient-independent mechanism. Studies in human neutrophils challenged with platelet activating factor and other receptor agonists, J. Biol. Chem. 265: 2169 (1990).

    Google Scholar 

  30. P. G. Heyworth and J. A. Badwey, Protein phosphorylation associated with the stimulation of neutrophils. Modulation of superoxide production by protein kinase C and calcium, J. Bioenerg. Biomembr. 22: 1 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. U. Kikkawa, A. Kishimoto, and Y. Nishizuka, The protein kinase C family: heterogeneity and its implications, Annu. Rev. Biochem. 58: 31 (1989).

    Article  PubMed  CAS  Google Scholar 

  32. M. Volpi, R. Yassin, P. H. Naccache, and R. I. Sha’afi, Chemotactic factor causes rapid decrease in phosphatidylinositol 4, 5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils, Biochem. Biophys. Res. Commun. 112: 957 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. C. N. Serhan, M. J. Broekman, H. M. Korchak, J. E. Smolen, A. J. Marcus, and G. Weissman, Changes in phosphatidylinositol and phosphatidic acid in stimulated neutrophils. Relationship to calcium mobilization, aggregation and superoxide radical generation, Biochim. Biophys. Acta 762: 420 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. H. Ohta, F. Okajima, and M. Ui, Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils. J. Biol. Chem. 260: 1571 (1985).

    Google Scholar 

  35. J-K. Pai, M. I. Siegel, R. W. Egan, and M. M. Billah, Activation of phospholipase D by chemotactic peptide in HL-60 granulocytes, Biochem. Biophys. Res. Commun. 150: 355 (1988).

    Article  PubMed  CAS  Google Scholar 

  36. M. Castagna, Y. Takai, K. Kaibuchi, K. Sano, U. Kikkawa, and Y. Nishizuka, Direct activation of calcium activated, phopholipid-dependent protein kinase by tumor-promoting phorbol esters. J. Biol. Chem. 257: 7847 (1982).

    PubMed  CAS  Google Scholar 

  37. H. Streb, R. F. Irvine, M. J. Berridge, and I. Schulz, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-l, 4, 5-trisphosphate, Nature 306: 67 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. M. Prentki, C. B. Wollheim, and P. D. Lew, Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol-1, 4, 5-trisphosphate. J. Biol. Chem. 25: 1377 (1984).

    Google Scholar 

  39. A. Couturier, S. Bazgar, and M. Castagna, Further characterization of tumor-promoter-mediated activation of protein kinase C, Biochem. Biophys. Res. Commun. 121: 448 (1984).

    Article  PubMed  CAS  Google Scholar 

  40. J. M. Robinson, J. A. Badwey, M. L. Karnovsky, and M. J. Karnovsky, Release of superoxide and change in morphology by neutrophils in response to phorbol esters. Antagonism by inhibitors of calcium binding proteins. J. Cell Biol. 101: 1052 (1985).

    Article  PubMed  CAS  Google Scholar 

  41. J. A. Badwey, J. M. Robinson, W. Horn, R. J. Soberman, M. J. Karnovsky, and M. L. Karnovsky, Synergistic stimulation of neutrophils. Possible involvement of 5-hydroxy-6, 8, 11, 14-eicosatetraenoate in superoxide release. J. Biol. Chem. 263: 2779 (1988).

    PubMed  CAS  Google Scholar 

  42. J. M. Robinson, J. A. Badwey, M. L. Karnovsky, and M. J. Karnovsky, Superoxide release by neutrophils: synergistic effects of a phorbol ester and a calcium ionophore. Biochem. Biophys. Res. Commun. 122: 734 (1984).

    Article  PubMed  CAS  Google Scholar 

  43. F. Di Virgilio, D. P. Lew, and T. Pozzan, Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels, Nature 310: 691 (1984).

    Article  PubMed  Google Scholar 

  44. A. Penfield and M. M. Dale, Synergism between A23187 and 1-oleoyl-2-acetyl-glycerol in superoxide production by human neutrophils, Biochem. Biophys. Res. Commun. 125: 332 (1984).

    Article  PubMed  CAS  Google Scholar 

  45. T. H. Finkel, M. J. Pabst, H. Suzuki, L. A. Guthrie, J. R. Forehand, W. A. Phillips, and R. B. Johnston Jr., Priming of neutrophils and macrophages for enhanced release of superoxide anion by the calcium ionophore A23187. Implications for regulation of the respiratory burst, J. Biol. Chem. 262: 12589 (1987).

    PubMed  CAS  Google Scholar 

  46. K. Kaibuchi, Y. Takai, M. Sawamura, M. Hoshijima, T. Fujikura, and Y. Nishizuka, Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation, J. Biol. Chem. 258: 6701 (1983).

    PubMed  CAS  Google Scholar 

  47. W. F. Stenson and C. W. Parker, Metabolism of arachidonic acid in ionophore-stimulated neutrophils. Esterification of a hydroxylated metabolite into phospholipids, J. Clin. Invest. 64: 1457 (1979).

    Article  PubMed  CAS  Google Scholar 

  48. R. W. Bonser, M. I. Siegel, S. M. Chung, R. T. McConnell, and P. Cuatrecasas, Esterification of an endogenously synthesized lipoxygenase product into granulocyte cellular lipids, Biochemistry 20: 5297 (1981).

    Article  PubMed  CAS  Google Scholar 

  49. C. J. Meade, G. A. Turner, and P. E. Bateman, The role of polyphosphoinositides and their metabolic products in A23187-induced release of arachidonic acid from rabbit polymorphonuclear leukocytes, Biochem. J. 238: 425 (1986).

    PubMed  CAS  Google Scholar 

  50. H. M. Korchak, L. E. Rutherford, and G. Weissman, Stimulus response coupling in the human neutrophil. Kinetic analysis of changes in calcium permeability. J. Biol. Chem. 259: 4070 (1984).

    PubMed  CAS  Google Scholar 

  51. D. Pittet, D. P. Lew, G. W. Mayr, A. Monod, and W. Schlegel, Chemotactic receptor promotion of Ca2+ influx across the plasma membrane of HL-60 cells. A role for cytosolic free calcium elevations and inositol (1, 3, 4, 5)-tetrakisphophate production. J. Biol. Chem. 264: 7251 (1989).

    PubMed  CAS  Google Scholar 

  52. F. Alonso, P. M. Henson, and C. C. Leslie, A cytosolic phospholipase in human neutrophils that hydrolyzes arachidonyl-containing phosphatidylcholine, Biochim. Biophys. Acta 878: 273 (1986).

    PubMed  CAS  Google Scholar 

  53. B. Samuelsson and C. D. Funk, Enzymes involved in the biosynthesis of Leukotriene B4, J. Biol. Chem. 264: 19469 (1989).

    PubMed  CAS  Google Scholar 

  54. P. H. Naccache, R. I. Sha’afi, P. Borgeat, and E. J. Goetzl, Mono-and dihydroxyeicosatetraenoic acids alter calcium homeostasis in rabbit neutrophils. J. Clin. Invest. 67: 1584 (1981).

    Article  PubMed  CAS  Google Scholar 

  55. D. Piomelli, A. Volterra, N. Dale, S. A. Siegelbaum, E. R. Kandel, J. H. Schwartz, and F. Belardetti, Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplvsia sensory cells, Nature 328: 38 (1987).

    Article  PubMed  CAS  Google Scholar 

  56. J. F. DiPersio, P. Billing, R. Williams, and J. C. Gasson, Human granulocyte-macrophage colony stimulating factor and other cytokines prime human neutrophils for enhanced arachidonic acid release and leukotriene B4 synthesis, J. Immunol. 140: 4315 (1988).

    Google Scholar 

  57. J. Nishihira and J. T. O’Flaherty, Phorbol myristate acetate receptors in human polymorphonuclear neutrophils, J. Immunol. 135: 3439 (1985).

    PubMed  CAS  Google Scholar 

  58. M. Wolfson, L. C. McPhail, V. N. Nasrallah, and R. Snyderman, Phorbol myristate acetate mediates redistribution of protein kinase C in human neutrophils: potential role in the activation of the respiratory burst enzyme, J. Immunol. 135: 2057 (1985).

    PubMed  CAS  Google Scholar 

  59. M. D. Bazzi and G. L. Nelsestuen, Properties of membrane-inserted protein kinase C, Biochemistry 27: 7589 (1988).

    Article  PubMed  CAS  Google Scholar 

  60. M. D. Bazzi and G. L. Nelsestuen, Properties of the protein kinase C-phorbol ester interaction, Biochemistry 28: 3577 (1989).

    Article  PubMed  CAS  Google Scholar 

  61. M. D. Bazzi and G. L. Nelsestuen, Differences in the effects of phorbol esters and diacylglycerols on protein kinase C, Biochemistry 28: 9317 (1989).

    Article  PubMed  CAS  Google Scholar 

  62. H. Hidaka, M. Inagaki, S. Kawamoto, and Y. Sasaki, Isoquinoline sulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C, J. Biol. Chem. 23: 5036 (1984).

    CAS  Google Scholar 

  63. E. Wilson, M. C. Olcott, B. M. Bell, A. H. Merrill, and J. D. Lambeth, Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role of protein kinase C in activation of the burst. J. Biol. Chem. 261: 12616 (1986).

    PubMed  CAS  Google Scholar 

  64. A. B. Jefferson and H. Schulman, Sphingosine inhibits calmodulin-dependent enzymes, J. Biol. Chem. 263: 15241 (1988).

    PubMed  CAS  Google Scholar 

  65. C. Schneider, M. Zanetti, and D. Romeo, Surface reactive stimuli selectively increase protein phosphorylation in human neutrophils, FEBS Lett. 127: 4 (1981).

    Article  PubMed  CAS  Google Scholar 

  66. J. A. Badwey, P. G. Heyworth, and M. L. Karnovsky, Phosphorylation of both 47 and 49kDa proteins accompanies superoxide release by neutrophils, Biochem. Biophys. Res. Commun. 158: 1029 (1989).

    Article  PubMed  CAS  Google Scholar 

  67. J. R. White, C.-H. Huang, J. M. Hill, P. H. Naccache, E. L. Becker, and R. I. Sha’afi, Effect of phorbol 12-myristate 13-acetate and its analogue 4-∝-phorbol-12, 13-didecanoate on protein phosphorylation and lysosomal enzyme release in rabbit neutrophils. J. Biol. Chem. 259: 8605 (1984).

    PubMed  CAS  Google Scholar 

  68. I. M. Kramer, R. L. Verhoeven, R. L. van der Bend, R. S. Weening, and D. Roos, Purified protein kinase C phosphorylates a 47-kDa protein in control neutrophil cytoplasts but not in cytoplasts from patients with the autosomal form of chronic granulomatous disease, J. Biol. Chem. 263: 6777 (1988).

    Google Scholar 

  69. J. A. Badwey, W. Horn, P. G. Heyworth, J. M. Robinson, and M. L. Karnovsky, Paradoxical effects of retinal in neutrophil stimulation, J. Biol. Chem. 264: 14947 (1989).

    PubMed  CAS  Google Scholar 

  70. P. G. Heyworth, M. L. Karnovsky, and J. A. Badwey, Protein phosphorylation associated with synergistic stimulation of neutrophils, J. Biol. Chem. 264: 14935 (1989).

    PubMed  CAS  Google Scholar 

  71. J. T. O’Flaherty and J. Nishihira, 5-Hydroxyicosatetraenoate promote Ca2+ and protein kinase C mobilization in neutrophils, Biochem. Biophys. Res. Commun. 148: 575 (1987).

    Article  PubMed  Google Scholar 

  72. J. E. Ferrel Jr. and G. S. Martin, Thrombin stimulates the activities of multiple previously unidentified protein kinases in platelets, J. Biol. Chem. 264: 20723 (1989).

    Google Scholar 

  73. U. Kikkawa, Y. Takai, Y. Tanaka, R. Miyake, and Y. Nishizuka, Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol. Chem. 258: 11442 (1983).

    PubMed  CAS  Google Scholar 

  74. Y. A. Hannun and R. M. Bell, Phorbol ester binding and activation of protein kinase C on triton X-100 mixed micelles containing phosphatidylserine, J. Biol. Chem. 261: 9341 (1986).

    PubMed  CAS  Google Scholar 

  75. Y. A. Hannun, C. R. Loomis, and R. M. Bell, Protein kinase C activation in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies, J. Biol. Chem. 261: 7184 (1986).

    PubMed  CAS  Google Scholar 

  76. M. Wolf, P. Cuatrecasas, and N. Sahyoun, Interaction of protein kinase C with membranes is regulated by Ca2+, phorbol esters, and ATP, J. Biol. Chem. 260: 15718 (1985).

    PubMed  CAS  Google Scholar 

  77. M. Wolf, H. LeVine III, W. S. May Jr., P. Cuatrecasas, and N. Sahyoun, A model for intracellular translocation of protein kinase C involving synergism between Ca2+ and phorbol esters, Nature 317: 546 (1985).

    Article  PubMed  CAS  Google Scholar 

  78. W. S. May Jr., N. Sahyoun, M. Wolf, and P. Cuatrecasas, Role of intracellular Ca2+ mobilization in the regulation of protein kinase C-mediated membrane processes, Nature 317: 549 (1985).

    Article  PubMed  CAS  Google Scholar 

  79. W. A. Phillips, T. Fujiki, M. W. Rossi, H. M. Korchak, and R. B. Johnston, Influence of calcium on the subcellular distribution of protein kinase C in human neutrophils. Extraction conditions determine partitioning of histone-phosphorylating activity and immunoreactivity between cytosol and particulate fractions, J. Biol. Chem. 264: 8361 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Badwey, J.A., Ding, J., Heyworth, P.G., Robinson, J.M. (1991). Products of Inflammatory Cells Synergistically Enhance Superoxide Production by Phagocytic Leukocytes. In: Wong, P.YK., Serhan, C.N. (eds) Cell-Cell Interactions in the Release of Inflammatory Mediators. Advances in Experimental Medicine and Biology, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6024-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6024-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6026-1

  • Online ISBN: 978-1-4684-6024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics