Transcellular Metabolism of Leukotrienes in the Lung

  • Timothy D. Bigby
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)


Leukotrienes are a family of oxygenated metabolites derived from the 5-lipoxygenase pathway of arachidonic acid metabolism via the unstable epoxide intermediate 5(S)5,6-oxido-7,9-trans-11,14-cis-eicosatetraenoic acid or leukotriene A4 (LTA4). Leukotrienes have potent effects on inflammatory cell Chemotaxis, adherence, and activation. They also have effects on noninflammatory cells and tissues thus increasing vascular permeability1, inducing smooth muscle contraction, modulating T- and B-cell function2, augmenting natural killer activity3, and inducing fibroblast Chemotaxis4. In humans, the distribution of the 5-lipoxygenase enzyme appears to be limited to inflammatory cells1. Within these cells, the 5-lipoxygenase enzyme is stimulated by millimolar calcium concentrations and ATP 5, associating with the cell membrane via the 5-lipoxygenase-activating protein6. The enzyme then inserts molecular oxygen at the C5 position of unesterified arachidonic acid and, in turn, further converts the resultant hydroperoxide, 5(S)-hydroperoxyeicosatetraenoic acid (5-HPETE), into LTA4. This epoxide is the pivotal intermediate in the 5-lipoxygenase pathway and can be metabolized within inflammatory cells to 5(S),12(R)-dihydroxy-6, 14-cis, 8, 10-trans-eicosatetraenoic acid (leukotriene B4, LTB4) by LTA4 hydrolase or to 5(S)-hydroxy-6(R)-S-glutathionyl-7, 9-trans-ll, 14-cis-eicosatetraenoic acid (leukotriene C4, LTC4) by glutathione-S-transferase 1.


Airway Epithelial Cell Epoxide Hydrolase Tracheal Epithelial Cell Human Airway Epithelial Cell Hydroperoxyeicosatetraenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Samuelsson, B. Leukotrienes: Mediators of immediate hypersensitivity reactions and inflammation. Science. 220: 568–575, 1983.PubMedCrossRefGoogle Scholar
  2. 2.
    Samuelsson, B. and H.-E. Claesson. Leukotriene B4: Biosynthesis and role in lymphocytes. Advances in Prostaglandin, Thromboxane, and Leukotriene Research. 20: 1–13, 1990.PubMedGoogle Scholar
  3. 3.
    Rola-Pleszczynski, M., L. Gagnon and P. Sirois. Leukotriene B4 augments human natural cytotoxic cell activity. Biochem Biophys Res Commun. 113: 531–537, 1983.PubMedCrossRefGoogle Scholar
  4. 4.
    Mensing, H. and B. M. Czarnetzki. Leukotriene B4 induces in vitro fibroblast Chemotaxis. J Investig Derm. 82: 9–12, 1984.CrossRefGoogle Scholar
  5. 5.
    Rouzer, C. A. and B. Samuelsson. On the nature of the 5-lipoxygenase reaction in human leukocytes: Enzyme purification and requirement for multiple stimulatory factors. Proc. Natl. Acad. Sci. USA. 82: 6040–6044, 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Miller, D. K., J. W. Gillard, P. J. Vickers, et al. Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 343: 278–281, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Radmark, O., C. Malmsten and B. Samuelsson. Leukotriene A: Stereochemistry and enzymatic conversion to leukotriene B. Biochem. Biophys. Res. Commun. 1980(3): 954–961, 1980.CrossRefGoogle Scholar
  8. 8.
    Fitzpatrick, F. A., D. R. Morton and M. A. Wynalda. Albumin stabilizes leukotriene A4. J. Biol. Chem. 257(9): 4680–4683, 1982.PubMedGoogle Scholar
  9. 9.
    Borgeat, P. and B. Samuelsson. Metabolism of arachidonic acid in polymorphonuclear leukocytes. Structural analysis of novel hydroxylated compounds. J. Biol. Chem. 254(16): 7865–7869, 1979.PubMedGoogle Scholar
  10. 10.
    Dahinden, C. A., R. M. Clancy, M. Gross, J. M. Chiller and T. E. Hugli. Leukotriene C4 production by murine mast cells: Evidence of a role for extracellular leukotriene A4. Proc. Natl. Acad. Sci. USA. 82: 6632–6636, 1985.PubMedCrossRefGoogle Scholar
  11. 11.
    Fitzpatrick, F., J. Haeggstom, E. Granstrom and B. Samuelsson. Metabolism of leukotriene A4 by an enzyme in blood plasma: A posible leukotactic mechanism. Proc. Natl. Acad. Sci. USA. 80: 5425–5429, 1983.PubMedCrossRefGoogle Scholar
  12. 12.
    Fitzpatrick, F., W. Liggett, J. McGee, et al. Metabolism of leukotriene A4 by human erthrocytes. A novel cellular source of leukotriene B4. J. Biol. Chem. 259(18): 11403–11407, 1984.PubMedGoogle Scholar
  13. 13.
    Haeggstrom, J., O. Radmark and F. A. Fitzpatrick. Leukotriene A4-hydrolase activity in guinea pig and human liver. Biochim. Biophys. Acta. 835: 378–384, 1985.PubMedGoogle Scholar
  14. 14.
    Bach, M. K., J. R. Brashler, R. E. Peck and D. R. Morton. Leukotriene C synthetase, a special glutathione Stransferase: Properties of the enzyme and inhibitor studies with special reference to the mode of action of U-60,257, a selective inhibitor of leukotriene synthesis. J. Allergy Clin. Immunol. 74: 353–357, 1984.PubMedCrossRefGoogle Scholar
  15. 15.
    Feinmark, S. J. and P. J. Cannon. Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes. J. Biol. Chem. 261(35): 16466–16472, 1986.PubMedGoogle Scholar
  16. 16.
    Maclouf, J. A. and R. C. Murphy. Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. J. Biol. Chem. 263(1): 174–181, 1988.PubMedGoogle Scholar
  17. 17.
    Ohishi, N., T. Izumi, M. Minami, et al. Leukotriene A4 hydrolase in the human lung. J. Biol. Chem. 262(21): 10200–10205, 1987.PubMedGoogle Scholar
  18. 18.
    Marcus, A. J. “Eicosanoids: Transcellular metabolism.” Inflammation: Basic Principles and Clinical Correlates. Gallin, Goldstein and Snyderman ed. 1988 Raven Press, Ltd. New York.Google Scholar
  19. 19.
    Bigby, T. D. and N. Meslier. Transcellular lipoxygenase metabolism between monocytes and platelets. J. Immunol. 143: 1948–1954, 1989.PubMedGoogle Scholar
  20. 20.
    Marcus, A. J., M. J. Broekman, L. B. Safier, H. L. Ullman N. Islam, C. N. Serhan, L. E. Rutherford, H. M. Korchak, and G. Weissmann. Formation of leukotrienes and other hydroxy acids during platelet-neutrophil interactions in vitro. Biochem. Biophys. Res. Commun. 109(1): 130–137, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Maclouf, J., B. Fruteau de Laclos and P. Borgeat. Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxy-icosatetraenoic acid. Proc. Natl. Acad. Sci. USA. 79: 6042–6046, 1982.PubMedCrossRefGoogle Scholar
  22. 22.
    Holtzman, M. J., D. Grunberger and J. A. Hunter. Phospholipid fatty acid composition of pulmonary airway epithelial cells: potential substrates for oxygenation. Biochim. Biophys. Acta. 877: 459–464, 1986.PubMedGoogle Scholar
  23. 23.
    Widdicombe, J. H., I. F. Ueki, D. Emery, et al. Release of cyclooxygenase products from primary cultures of tracheal epithelia of dog and human. Am J Physiol. 257: L361–365, 1989.Google Scholar
  24. 24.
    Holtzman, M. J., H. Aizawa, J. A. Nadel and E. J. Goetzl. Selective generation of leukotrienes by tracheal epithelial cells from dogs. Biochem. Biophys. Res. Commun. 114: 1071–1080, 1983.PubMedCrossRefGoogle Scholar
  25. 25.
    Holtzman, M. J., W. E. Finkbeiner, E. J. Goetzl and J. A. Nadel. Selective generation of leukotriene B4 and 15-hydroxy-eicosatetraenoic acid by human tracheal epithelial cells. Fed Proc. 43: 829A, 1984.Google Scholar
  26. 26.
    Hunter, J. A., W. E. Finkbeiner, J. A. Nadel, E. J. Goetzl and M. J. Holtzamn. Predominant generation of 15-lipoxygenase metabolites of arachidonic acid by epithelial cells from human trachea. Proc. Natl. Acad. Sci. USA. 82: 4633–4637, 1985.PubMedCrossRefGoogle Scholar
  27. 27.
    Drazen, J. M. and K. F. Austen. State of Art. Leukotrienes and airway responses. Am. Rev. Respir. Dis. 136: 985–998, 1987.PubMedCrossRefGoogle Scholar
  28. 28.
    Henderson, W. R. Eicosanoids and lung inflammation. Am. Rev. Respir. Dis. 135: 1176–1185, 1987.PubMedGoogle Scholar
  29. 29.
    Bigby, T. D. and J. A. Nadel. “Asthma.” Inflammation: Basic Principles and Clinical Correlates. Gallin, Goldstein and Snyderman ed. 1988 Raven Press, Ltd. New York.Google Scholar
  30. 30.
    Bigby, T. D., D. M. Lee, N. Meslier and D. C. Gruenert. Leukotriene A4 hydrolase activity in human airway epithelial cells. Biochem Biophys Res Commun. 164(1): 1–7, 1989.PubMedCrossRefGoogle Scholar
  31. 31.
    Maycock, A. L., M. S. Anderson, D. M. DeSousa and F. A. Kuehl Jr. Leukotriene A4: Preparation and Enzymatic Conversion in a Cell-free Ssytem to Leukotriene B4. J. Biol. Chem. 257(23): 13911–13914, 1982.PubMedGoogle Scholar
  32. 32.
    Gruenert, D. C., C. B. Basbaum, M. J. Welsh, et al. Characterization of human tracheal epithelial cells transformed by an origin-defective simian virus 40. Proc. Natl. Acad. Sci. USA. 85: 5951–5955, 1988.PubMedCrossRefGoogle Scholar
  33. 33.
    Coleman, D. L., I. K. Tuet and J. H. Widdicombe. Electrical properties of dog tracheal epithelial cells grown in monolayer culture. Am. J. Physiol. 246(C355-C359): 1984.Google Scholar
  34. 34.
    Bigby, T. D., D. M. Lee, M. J. Banda, et al. Human airway epithelial cell leukotriene A4 hydrolase. J Cell Biochem. Suppl 14C: 330, 1990.Google Scholar
  35. 35.
    Radmark, O., C. Malmsten, B. Samuelsson, et al. Leukotriene A: Isolation from human polymorphonuclear leukocytes. J. Biol. Chem. 255(24): 11828–11831, 1980.PubMedGoogle Scholar
  36. 36.
    Marcus, A. J., B. B. Weksler, E. A. Jaffe and M. J. Broekman. Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J. Clin. Investig. 66: 979–986, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    McGee, J. G. and F. A. Fitzpatrick. Erythrocyte-neutrophil interactions: Formation of leukotriene B4 by transcellular biosynthesis. Proc. Natl. Acad. Sci. USA. 83: 1349–1353, 1986.PubMedCrossRefGoogle Scholar
  38. 38.
    Radmark, O., T. Shimizu, H. Jornvall and B. Samuelsson. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J. Biol. Chem. 259(20): 12339–12345, 1PubMedGoogle Scholar
  39. 39.
    Funk, C. D., O. Radmark, J. Y. Fu, et al. Molecular cloning and amino acid sequence of leukotriene A4 hydrolase. Proc. Natl. Acad. Sci. USA. 84: 6677–6681, 1987.PubMedCrossRefGoogle Scholar
  40. 40.
    Minami, M., Y. Minami, Y. Emori, et al. Expression of human leukotriene A4 hydrolase cDNA in Escherichia coli. FEBS Letters. 229(2): 279–282, 1988.PubMedCrossRefGoogle Scholar
  41. 41.
    McGee, J. and F. Fitzpatrick. Enzymatic hydration of leukotriene A4. Purification and characterization of a novel epoxide hydrolase from human erythrocytes. J. Biol. Chem. 260(23): 12832–12837, 1985.PubMedGoogle Scholar
  42. 42.
    Evans, J. F., D. J. Nathaniel, R. J. Zamboni and A. W. Ford-Hutchinson. Leukotriene A3. A poor substrate but a potent inhibitor of rat and human neutrophil leukotriene A4 hydrolase. J Biol Chem. 260: 10966–10970, 1985.PubMedGoogle Scholar
  43. 43.
    Toh, H., M. Minami and T. Shimizu. Molecular evolution and zinc ion binding motif of leukotriene A4 hydrolase. Biochem Biophys Res Commun. 171: 216–221, 1990.PubMedCrossRefGoogle Scholar
  44. 44.
    Haeggstrom, J. Z. Leukotriene A4 hydrolase: an epoxide hydrolase with peptidase activity. Biochem Biopys Res Commun. 173: 431–437, 1990.CrossRefGoogle Scholar
  45. 45.
    Medina, J. F., C. Barrios, C. D. Funk, et al. Human fibroblasts show expression of the leukotriene A4 hydrolase gene, which is increased after simian virus 40 transformation. Eur J Biochem. 191: 27–31, 1990.PubMedCrossRefGoogle Scholar
  46. 46.
    Medina, J. F., J. Haeggstrom, M. Kumlin and O. Radmark. Leukotriene A4: metabolism in different rat tissues. Biochim Biophys Acta. 961: 203–212, 1988.PubMedGoogle Scholar
  47. 47.
    Ohishi, N., M. Minami, J. Kobayashi, et al. Immunological quantitation and immunohistochemical localization of leukotriene A4 hydrolase in guinea pig tissues. J Biol Chem. 265: 7520–7525, 1990.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Timothy D. Bigby
    • 1
  1. 1.Department of Medicine, San Diego and Veterans Administration Medical CenterUniversity of CaliforniaSan DiegoUSA

Personalised recommendations