Role of Eicosanoids and the Cytokine Network in Transmembrane Signaling in Vascular Cells

  • Kenneth B. Pomerantz
  • David P. Hajjar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 314)


The concept that atherosclerosis is an inflammatory response to injury is based on observations that cells of monocytic origin, including macrophages and T-cells populate the developing atherosclerotic lesion. This is in addition to the well-characterized smooth muscle cell infiltrate1. Since endothelial cell activation or injury is a prerequisite for monocyte adhesion and diapedesis, the histologic evidence described above support the hypothesis that endothelial cell injury is an important initial event in the development of the inflammatory lesion. Activation or injury may thus initiate a series of process that lead to intimai hyperplasia and choiesteryl ester deposition within the macrophage and smooth muscle cell.


Smooth Muscle Cell Cholesteryl Ester Smooth Muscle Cell Proliferation Aortic Smooth Muscle Cell Arterial Smooth Muscle Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Davies, Biology of Disease: Vascular cell interactions with special reference to the pathgenesis of atherosclerosis, Lab. Invest. 55: 5 (1986).PubMedGoogle Scholar
  2. 2.
    D. Falcone, D. Hajjar, and C. Minick, Enhancement of cholesterol and cholesteryl ester accumulation in re-endothelialized aorta, Amer. J. Pathol. 99: 81 (1980).Google Scholar
  3. 3.
    D. Hajjar, D. Falcone, S. Fowler, and C. Minick, Endothelium modifies the altered metabolism of the injured aortic wall, Amer. J. Pathol. 102: 28 (1981).Google Scholar
  4. 4.
    R. Cotran, and J. Pober, Effects of cytokines on vascular endothelium: their role in vascular and immune injury, Kidney Int. 35: 969 (1989).PubMedGoogle Scholar
  5. 5.
    P. Dawson, S. Hofmann, D. van de Westhuyzen, T. Sudhof, M. Brown, and J. Goldstein, Sterol-dependent repression of low density lipoprotein receptor promotor mediated by 16-base pair sequence adjacent to binding site for transcription factor Spl, J. Biol. Chem. 263: 3372 (1988).PubMedGoogle Scholar
  6. 6.
    M. Brown, and J. Goldstein, A receptor-mediated pathway for cholesterol homeostasis, Science 232: 34 (1986).PubMedGoogle Scholar
  7. 7.
    T. Kodama, M. Freeman, L. Rohrer, J. Zabrecky, P. Matsudaira, and M. Krieger, Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils, Nature 343: 531 (1990).PubMedGoogle Scholar
  8. 8.
    O. Stein, J. Vanderhoek, and Y. Stein, Cholesterol content and sterol synthesis in human skin fibroblasts and rat aortic smooth muscle cells exposed to lipoprotein-depleted serum and high density apoprotein/phospholipid mixtures, Biochim.Biophys.Acta 431: 347 (1976).PubMedGoogle Scholar
  9. 9.
    R. Ross, J. Glomset, B. Kariya, and L. Harker, A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro, Proc. Natl. Acad. Sci. USA 71: 1207 (1974).PubMedGoogle Scholar
  10. 10.
    J. Fingerle, R. Johnson, A. Clowes, M. Majesky, and M. Reidy, Role of platelets in smooth muscle proliferation and migration after vascular injury in rat carotid artery, Proc. Natl. Acad. Sci. USA 86: 8412 (1989).PubMedGoogle Scholar
  11. 11.
    G. Grotendorst, H. Seppa, H. Kleinman, and G. Martin, Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 78: 3669 (1981).PubMedGoogle Scholar
  12. 12.
    J. Nakao, H. Ito, W. Chang, Y. Koshihara, and S. Murota, Aortic smooth muscle cell migration caused by platelet-derived growth factor is mediated by lipoxygenase product(s) of arachidonic acid, Biochem. Biophys. Res. Comm. 112: 866 (1983).PubMedGoogle Scholar
  13. 13.
    C. Walker, D. Bowen-Pope, R. Ross, and M. Reidy, Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury, Proc. Natl. Acad. Sci. USA 83: 7311 (1986).PubMedGoogle Scholar
  14. 14.
    J. Wilcox, K. Smith, L. Williams, S. Schwartz, and D. Gordon, Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization, J. Clin. Invest. 82: 1134 (1988).PubMedGoogle Scholar
  15. 15.
    T. Barrett, and E. Benditt, sis (platelet-derived growth factor B chain) gene transcript levels are elevated in human atherosclerotic lesions compared to normal artery, Proc. Natl. Acad. Sci. USA 84: 1099 (1987).PubMedGoogle Scholar
  16. 16.
    K. Pietila, and T. Nikkari, Enhanced growth of smooth muscle cells from atherosclerotic rabbit aortas in culture, Athero 36: 241 (1980).Google Scholar
  17. 17.
    R. Ross, J. Masuda, E. Raines, A. Gown, S. Kutsuda, M. Sasahara, L. Maiden, H. Masuko, and H. Sato, Localization of PDGF-B chain in macrophages in all phases of atherogenesis, Science 248: 1009 (1990).PubMedGoogle Scholar
  18. 18.
    M. Klagsbrun, and E. Edelman, Biological and biochemical properties of fibroblast growth factors. Implications for the pathogenesis of atherosclerosis, Arterio. 9: 269 (1989).Google Scholar
  19. 19.
    C. Gay, and J. Winkles, Heparin-binding growth factor-I stimulation of human endothelial cells induces platelet-derived growth factor A-chain gene expression, J. Biol. Chem. 265: 3284 (1990).PubMedGoogle Scholar
  20. 20.
    A. Chait, R. Ross, J. Albers, and E. Bierman, Platelet-derived growth factor stimulates activity of low density lipoprotein receptors, Proc. Natl. Acad. Sci. USA 77: 4084 (1980).PubMedGoogle Scholar
  21. 21.
    P. Davies, and C. Kerr, Modification of low density lipoprotein metabolism by growth factors in cultures of vascular endothelial cells and human skin fibroblasts, Biochim.Biophys.Acta 712: 26 (1982).PubMedGoogle Scholar
  22. 22.
    T. Mazzone, K. Basheerruddin, L. Ping, S. Frazer, and G. Getz, Mechanism of growth-related activation of the low density lipoprotein receptor pathway, J. Biol. Chem. 264: 1787 (1989).PubMedGoogle Scholar
  23. 23.
    P. Davies, and R. Ross, Mediation of pinocytosis in cultured arterial smooth muscle and endothelial cells by platelet-derived growth factor, J. Cell Biol. 79: 663 (1978).PubMedGoogle Scholar
  24. 24.
    K. Suzuki, M. Hara, A. Kitani, M. Haragai, K. Norioka, K. Kondo, F. Hirata, N. Sakata, M. Kawakami, M. Kawagoe, and H. Nakamura, Augmentation of LDL receptor activities on lymphocytes by interleukin-2 and anti-CD3 antibody: a flow cytometric analysis, Biochim.Biophys.Acta 1042: 352 (1990).PubMedGoogle Scholar
  25. 25.
    D. Hajjar, A. Marcus, and K. Hajjar, Interactions of arterial cells: studies on the mechanisms of endothelial cell modulation of cholesterol metabolism in co-cultured smooth muscle cells, J. Biol. Chem. 262: 6976 (1987).PubMedGoogle Scholar
  26. 26.
    A. Nicholson, and D. Hajjar, Transforming growth factor-beta: effects on smooth muscle cell growth and cholesterol metabolism, FASEB J. 3: A612 (1989). (Abstract)Google Scholar
  27. 27.
    B. Feinberg, R. Kurzrock, M. Talpaz, M. Blick, and S. Saks, A phase-I trial of intravenously-administered recombinant tumor necrosis factor in cancer patients, J. Clin. Oncol. 6: 1328 (1988).PubMedGoogle Scholar
  28. 28.
    A. Wilson, R. Schaub, R. Goldstein, and P. Kuo, Suppression of aortic atherosclerosis in cholesterol-fed rabbits by purified rabbit interferon, Arterio. 10: 208 (1990).Google Scholar
  29. 29.
    T. Issekutz, Effects of six different cytokines on lymphocyte adherence to microvascular endothelium and in vivo lymphocyte migration in the rat, J.Immunol. 144: 2140 (1990).PubMedGoogle Scholar
  30. 30.
    K. Shinjo, S. Tsuda, T. Hayama, T. Asahi, and H. Kawaharada, Increase in permeability of human endothelial cell monolayer by recombinant human lymphotoxin, Biochem. Biophys. Res. Comm. 162: 1431 (1989).PubMedGoogle Scholar
  31. 31.
    S. Zuckerman, and Y. Surprenant, Induction of endothelial cell/macrophage procoagulant activity: synergistic stimulation by gamma interferon and granulocyte-macrophage colony stimulating factor, Thomb. Haemo. 61: 178 (1989).Google Scholar
  32. 32.
    J. Masuyama, N. Minato, and S. Kano, Mechanisms of lymphocyte adhesion to human vascular endothelial cells in culture. T-lymphocyte adhesion to endothelial cell HLD-DR antigens induced by gamma interferon, J. Clin. Invest. 77: 1596 (1986).PubMedGoogle Scholar
  33. 33.
    C. Hicks, S. Breit, and R. Penny, Response of microvascular endothelial cells to biological response modifiers, fiflmunol. Cell Biol. 67: 271 (1989).Google Scholar
  34. 34.
    E. Raines, S. Downer, and R. Ross, Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA, Science 243: 393 (1989).PubMedGoogle Scholar
  35. 35.
    G. Hansson, M. Hellstrand, L. Rymo, L. Rubbia, and G. Gabbiani, Interferon-gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells, J. Exptl. Med. 170: 1595 (1989).Google Scholar
  36. 36.
    H. Sawada, M. Kan, and W. McKeehan, Opposite effects of monokines (interleukin-1 and tumor necrosis factor) on proliferation and heparin-binding (fibroblast) growth factor binding to human aortic endothelial and smooth muscle cells, In Vitro 26: 213 (1990).Google Scholar
  37. 37.
    A. Fogelman, J. Seager, M. Haberland, M. Hokom, R. Tanaka, and P. Edwards, Lymphocyte-conditioned medium protects human mono-cyte-macrophages from cholesteryl ester accumulation, Proc. Natl. Acad. Sci. USA 79: 922 (1982).PubMedGoogle Scholar
  38. 38.
    B. Van Lentin, A. Fogelman, J. Seager, E. Ribi, M. Haberland, and P. Edwards, Bacterial endotoxin selectively prevents the expression of scavenger-receptor activity on human monocyte-macrophages, J.Immunol. 134: 3718 (1985).Google Scholar
  39. 39.
    K. Pomerantz, and D. Hajjar, Eicosanoids in regulation of arterial smooth muscle cell phenotype, proliferative capacity, and cholesterol metabolism, Arterio. 9: 413 (1989).Google Scholar
  40. 40.
    J. Wang, Y. Lu, Z. Guo, E. Zhen, and F. Shi, Lipid peroxides, glutathione peroxidase, prostacyclin and cell cycle stages in normal and atherosclerotic Japanese quail arteries, Athero 75: 219 (1989).Google Scholar
  41. 41.
    R. Gryglewski, E. Kosta-Trabka, A. Deminska-Kiec, and R. Korbut, Prostacyclin and atherosclerosis — experimental and clinical approaches, Adv. Expt. Med. Biol. 243: 21 (1988).Google Scholar
  42. 42.
    S. Akopov, A. Orekhov, V. Tertov, K. Khashimov, E. Gabrielyan, and V. Smirnov, Stable analogues of prostacyclin and throm-boxane A2 display contradictory influences on atherosclerotic properties of cells cultured from human aorta, Athero 72: 245 (1988).Google Scholar
  43. 43.
    E. Jaffe, Cell biology of endothelial cells, Hum. Pathol. 18: 234 (1987).PubMedGoogle Scholar
  44. 44.
    K. Pritchard, P. Wong, and M. Sternerman, Atherogenic concentrations of low density lipoprotein enhance endothelial cell generation of epoxyeicosatrienoic acid products, Amer. J. Pathol. in press:(1990).Google Scholar
  45. 45.
    S. Feinmark, and P. Cannon, Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes, J. Biol. Chem. 261: 16466 (1986).PubMedGoogle Scholar
  46. 46.
    M. Clark, D. Littlejohn, S. Mong, and S. Crooke, Effect of leukotrienes, bradykinin, and calcium ionophore (A-23187) on bovine endothelial cells: release of prostacyclin, Prostaglandins 31: 157 (1986).PubMedGoogle Scholar
  47. 47.
    S. Moore, L. Prokuski, P. Figard, A. Spector, and M. Hart, Murine cerebral microvascular endothelium incorporate and metabolize 12-hydroxyeicosatetraenoic acid, J. Cell. Phvsiol. 137: 75 (1988).Google Scholar
  48. 48.
    S. Hong, T. Carty, and D. Deykin, Tranylcypromine and 15-hydrop-eroxyarachidonate affect arachidonic acid release in addition to inhibition of prostacyclin synthesis in calf aortic endothelial cells, J. Biol. Chem. 255: 9538 (1980).PubMedGoogle Scholar
  49. 49.
    T. Kanayasu, J. Nakao-Hayashi, N. Asuwa, I. Mirota, T. Ishii, H. Ito, and S. Murota, Leukotriene C4 stimulates angiogenesis in bovine carotid artery endothelial cells in vitro, Biochem. Biophys. Res. Comm. 159: 572 (1989).PubMedGoogle Scholar
  50. 50.
    D. Leszczynski, and P. Hayry, Eicosanoids are regulatory molecules in gamma-interferon-induced endothelial antigenicity and adherence for leukocytes, FEBS Letters 242: 383 (1989).PubMedGoogle Scholar
  51. 51.
    J. Palmblad, P. Lindstrom, and R. Lerner, Leukotriene B4-induced hyperadhesiveness of endothelial cells for neutrophils, Biochem. Biophys. Res. Comm. 166: 848 (1990).PubMedGoogle Scholar
  52. 52.
    T. Casale, and M. Abbas, Comparison of leukotriene B4-induced neutrophil migration through different cellular barriers, American Journal of Physiology 258: C639 (1990).PubMedGoogle Scholar
  53. 53.
    K. Honn, I. Grossi, L. Fitzgerald, L. Umbarger, C. Diglio, and J. Taylor, Lipoxygenase products regulate IRGpIIb/IIIa receptor adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin, Proc. Soc. Exptl. Biol. Med. 189: 130 (1988).Google Scholar
  54. 54.
    M. Buchanan, M. Vazquez, and M. Gimbrone, Arachidonic acid metabolism and the adhesion of human polymorphonuclear leukocytes to cultured vascular endothelial cells, Blood 62: 889 (1983).PubMedGoogle Scholar
  55. 55.
    K. Pritchard, R. Tota, M. Stemerman, and P. Wong, 14, 15-Epoxyeicosatetraenoic acid promotes endothelial cell dependent adhesion of human monocytic tumor U937 cells, Biochem. Biophys. Res. Comm. 167: 137 (1990).PubMedGoogle Scholar
  56. 56.
    M. Perlman, A. Johnson, W. Jubiz, and A. Malik, Lipoxygenase products induce neutrophil activation and increase endothelial permeability after thrombin-induced pulmonary microembolism, Circ. Res. 64: 62 (1989).PubMedGoogle Scholar
  57. 57.
    J. Gudgeon, and W. Martin, Modulation of arterial permeability: studies on an in vitro model, Br. J. Pharmacol. 98: 1267 (1989).PubMedGoogle Scholar
  58. 58.
    K. Pomerantz, and D. Hajjar, Eicosanoid metabolism in cholesterol-enriched arterial smooth muscle cells: reduced arachidonate release with concommitant decrease in cyclooxygenase products, J. Lipid. Res. 30: 1219 (1989).PubMedGoogle Scholar
  59. 59.
    J. Bailey, R. Bryant, J. Whiting, and K. Salata, Characterization of 11-HETE and 15-HETE, together with prostacyclin, as major products of the cyclooxygenase pathway in cultured rat aorta smooth muscle cells, J. Lipid. Res. 24: 1419 (1983).PubMedGoogle Scholar
  60. 60.
    S. Feinmark, and P. Cannon, Vascular smooth muscle cell leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism, Biochim.Biophys.Acta 922: 125 (1987).PubMedGoogle Scholar
  61. 61.
    J. Thyberg, U. Hedin, M. Sjolund, L. Palmberg, and B. Bottger, Regulation of differentiated properties and proliferation of arterial smooth muscle cells, Arterio. 10: 966 (1990).Google Scholar
  62. 62.
    M. Sjolund, J. Nilsson, L. Palmberg, and J. Thyberg, Phenotype modulation of primary cultures of arterial smooth muscle cells. Dual effect of prostaglandin E1, Differentiation 27: 158 (1984).PubMedGoogle Scholar
  63. 63.
    J. Larrue, D. Daret, J. Demond-Henri, C. Allieres, and H. Bricaud, Prostacyclin synthesis in proliferative aortic smooth muscle cells. A kinetic in vivo and in vitro study, Athero 50: 63 (1984).Google Scholar
  64. 64.
    L. Palmberg, H. Claesson, and J. Thyberg, Effect of leukotrienes on phenotypic properties and growth of arterial smooth muscle cells in primary culture, J. Cell Sci. 93: 403 (1989).PubMedGoogle Scholar
  65. 65.
    J. Nakao, T. Ooyama, H. Ito, W. Chang, and S. Murota, Comparative effect of lipoxygenase products of arachidonic acid on rat aortic smooth muscle cell migration, Athero 44: 339 (1982).Google Scholar
  66. 66.
    J. Hirusumi, A. Nomoto, Y. Ohkubo, C. Sekiguchi, S. Mutoh, I. Yamaguchi, and H. Aoki, Inflammatory responses in cuffinduced atherosclerosis in rabbits, Athero 64: 243 (1987).Google Scholar
  67. 67.
    H. Sinzinger, T. Zidek, P. Fitscha, J. O’Grady, O. Wagner, and J. Kaliman, Prostaglandin I2 reduces activation of human arterial smooth muscle cells in vivo, Prostaglandins 33: 915 (1987).PubMedGoogle Scholar
  68. 68.
    Y. Uehara, T. Ishimitsu, K. Kimura, M. Ishii, T. Ikeda, and T. Sugimoto, Regulatory effects of eicosanoids on thymidine uptake by vascular smooth muscle cells of rats, Prostaglandins 36: 847 (1988).PubMedGoogle Scholar
  69. 69.
    J. Nilsson, and A. Olsson, Prostaglandin E1 inhibits DNA synthesis in arterial smooth muscle cells stimulated with platelet-derived growth factor, Athero 53: 77 (1984).Google Scholar
  70. 70.
    L. Palmberg, H. Claesson, and J. Thyberg, Leukotrienes stimulate initiation of DNA synthesis in cultured arterial smooth muscle cells, J. Cell Sci. 88: 151 (1987).PubMedGoogle Scholar
  71. 71.
    M. Clark, D. Littlejohn, T. Conway, S. Mong, S. Steiner, and S. Crooke, Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity, J. Biol. Chem. 261: 10713 (1986).PubMedGoogle Scholar
  72. 72.
    D. Smith, A. Willis, and I. Mahmud, Eicosanoid effects on cell proliferation in vitro: relevance to atherosclerosis, Prosta. Leuko. Med. 16: 1 (1984).Google Scholar
  73. 73.
    D. Hajjar, B. Weksler, D. Falcone, J. Hefton, K. Tack-Goldman, and C. Minick, Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine mono-phosphate in rabbit aortic smooth muscle cells, J. Clin. Invest. 70: 479 (1982).PubMedGoogle Scholar
  74. 74.
    D. Hajjar, C. Minick, and S. Fowler, Arterial neutral cholesteryl esterase. A hormone-sensitive enzyme distinct from the lysosomal enzyme, J. Biol. Chem. 258: 192 (1983).PubMedGoogle Scholar
  75. 75.
    D. Hajjar, A. Marcus, and O. Etingin, Platelet-Neutrophil-Smooth Muscle Cell Interactions: Lipoxygenase-derived mono-and dihydroxy acids activate cholesteryl ester hydrolysis by the cyclic AMP dependent protein kinase cascade, Biochem. 28: 8885 (1989).Google Scholar
  76. 76.
    D. Hajjar, and B. Weksler, Metabolic activity of cholesteryl esters in aortic smooth muscle cells is altered by prostag-landins I2 and E2, J. Lipid. Res. 24: 1176 (1983).PubMedGoogle Scholar
  77. 77.
    M. Baiter, G. Toews, and M. Peters-Golden, Different patterns of arachidonate metabolism in autologous blood monocytes and alveolar macrophages, J.Immunol. 142: 602 (1989).Google Scholar
  78. 78.
    G. Cott, J. Westcott, and N. Voelkel, Protaglandin and leukotriene production by alveolar type II cells in vitro, Am. J. Phvsiol. 258: L179 (1990).Google Scholar
  79. 79.
    G. Brown, M. Monick, and G. Hunninghake, Human alveolar macrophage arachidonic acid metabolism, Am. J. Phvsiol. 254:C-809 (1988).Google Scholar
  80. 80.
    C. Rouzer, W. Scott, A. Hammill, and Z. Cohn, Synthesis of leukotriene C and other arachidonic acid metabolites by mouse pulmonary macrophages, J. Exptl. Med. 155: 720 (1982).Google Scholar
  81. 81.
    U. Schade, H. Holl, and E. Rietschel, Metabolism of exogenous arachidonic acid by mouse peritoneal macrophages, Prostaglandins 34: 401 (1987).PubMedGoogle Scholar
  82. 82.
    M. Peters-Golden, R. McNish, J. Brieland, and J. Fantone, Diminished protein kinase C-activated arachidonate metabolism accompanies rat macropahge differentiation in the lung, J.Immunol. 144: 4320 (1990).PubMedGoogle Scholar
  83. 83.
    V. Kaever, H. Pfannkuche, K. Wessel, and K. Resch, The ratio of macrophage prostaglandin and leukotriene synthesis is determined by the intracellular free calcium level, Biochem. Pharmacol. 39: 1313 (1990).PubMedGoogle Scholar
  84. 84.
    J. Humes, E. Opas, M. Galavage, D. Soderman, and R. Bonney, Regulation of macrophage eicosanoid production by hydroperoxy-and hydroxy-eicosatetraenoic acids, Biochem. J. 233: 199 (1986).PubMedGoogle Scholar
  85. 85.
    C. Kadiri, J. Masliah, M. Bachelet, B. Vargftig, and G. Bereziat, Phospholipase A2-mediated release of arachidonic acid in stimulated guinea pig alveolar macrophages: interaction with lipid mediators and cyclic AMP, J. Cell. Biochem. 40: 157 (1989).PubMedGoogle Scholar
  86. 86.
    C. Tripp, A. Wyche, E. Unanue, and P. Needleman, The functional significance of the regulation of macrophage Ia expression by endogenous arachidonate metabolites in vitro, J.Immunol. 137: 3915 (1986).PubMedGoogle Scholar
  87. 87.
    F. Ondrey, K. Anderson, D. Hoeltgen, and J. Harris, Differentiation of U937 cells induced by 5, 8, 11, 14 — eicosatetraynoic acid, a competitive inhibitor of arachidonic acid metabolism, Expt. Cell Res. 179: 477 (1988).Google Scholar
  88. 88.
    N. Morisaki, T. Kanzaki, M. Kitahara, Y. Saito, and S. Yoshida, Inhibitory effect of prostaglandin E2 on cholesterol ester accumulation in macrophages, Biochem. Biophys. Res. Comm. 137: 461 (1986).PubMedGoogle Scholar
  89. 89.
    W. Krone, A. Klass, H. Nagele, B. Behnke, and H. Greten, Effect of prostaglandins on LDL receptor activity and cholesterol synthesis in freshly isolated human mononuclear leukocytes, J. Lipid. Res. 29: 1663 (1988).PubMedGoogle Scholar
  90. 90.
    J. Schroeff, L. Havekes, A. Weerheim, J. Emeis, and B. Vermeer, Suppression of cholesteryl ester accumulation in cultured human monocyte-derived macrophages by lipoxygenase inhibitors, Biochem. Biophys. Res. Comm. 127: 366 (1985).PubMedGoogle Scholar
  91. 91.
    J. Korn, Fibroblast prostaglandin E2 synthesis. Persistance of an abnormal phenotype after short-term exposure to mononuclear cell products, J. Clin. Invest. 71: 1240 (1983).PubMedGoogle Scholar
  92. 92.
    A. Habernicht, M. Goerig, J. Grulich, D. Rothe, R. Gronwald, U. Loth, G. Schettler, B. Kommerell, and R. Ross, Human platelet-derived growth factor stimulates prostaglandin synthesis by activation and by rapid de novo synthesis of cyclooxygenase, J. Clin. Invest. 75: 1381 (1985).Google Scholar
  93. 93.
    M. Goerig, A. Habenicht, W. Zeh, P. Salbach, K. Burkhard, D. Rothe, W. Nastainszyk, and J. Glomset, Evidence for coordinate, selective regulation of eicosanoid synthesis in platelet-derived growth factor-stimulated 3T3 fibroblasts and in HL-60 cells induced to differentiate into macrophages or neutrophils, J. Biol. Chem. 263: 19384 (1988).PubMedGoogle Scholar
  94. 94.
    S. Coughlin, M. Moskowitz, H. Antoniades, and L. Levine, Serotonin receptor-mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 78: 7134 (1981).PubMedGoogle Scholar
  95. 95.
    J. Blay, and M. Hollenberg, Epidermal growth factor stimulation of prostacyclin produciton by cultured aortic smooth muscle cells: requirement for increased cellular calcium levels, J. Cell. Phvsiol. 139: 524 (1989).Google Scholar
  96. 96.
    A. Ristimaki, O. Ylikorkala, and L. Viinikka, Effect of growth factors on human vascular endothelial cell prostacyclin production, Arterio. 10: 653 (1990).Google Scholar
  97. 97.
    B. Weksler, Heparin and acidic fibroblast growth factor interact to decrease prostacyclin synthesis in human endothelial cells by affecting both prostaglandin H synthase and prostacyclin synthase, J. Cell. Phvsiol. 142: 514 (1990).Google Scholar
  98. 98.
    T. Hori, S. Kashiyama, M. Hayakawa, S. Shibamoto, M. Tsujimoto, N. Oku, and F. Ito, Possible role of prostaglandins as negative regulators in growth stimulation by tumor necrosis factor and epiderminal growth factor in human fibroblasts, J. Cell. Phvsiol. 141: 275 (1989).Google Scholar
  99. 99.
    F. Breviairio, P. Proserpio, F. Bertocchi, M. Lampugnani, A. Mantovani, and E. Dejana, Interleukin-1 stimulates prostacyclin production by cultured human endothelial cells by increasing mobilization and conversion, Arterio. 10: 129 (1990).Google Scholar
  100. 100.
    C. Albrightson, N. Baenziger, and P. Needleman, Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: role of monokines and interleukin I, J.Immunol. 135: 1872 (1985).PubMedGoogle Scholar
  101. 101.
    H. Bull, M. Rustin, J. Spaull, J. Cohen, E. Wilson-Jones, and P. Dowd, Pro-inflammatory mediators induce sustained release of prostaglandin E2 from human dermal microvascular endothelial cells, Br. J. Dermatol. 122: 153 (1990).PubMedGoogle Scholar
  102. 102.
    M. Rustin, H. Bull, and P. Dowd, Effect of human recombinant interleukin — lα on release of prostacyclin from human endothelial cells, Br. J. Dermatol. 120: 153 (1989).PubMedGoogle Scholar
  103. 103.
    R. Burch, J. Connor, and J. Axelrod, Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts, Proc. Natl. Acad. Sci. USA 85: 6306 (1988).PubMedGoogle Scholar
  104. 104.
    L. O’Neill, and G. Lewis, Interleukin-1 potentiates bradykinin-and TNF-alpha-induced PGE2 release, Europ. J. Pharmacol. 166: 131 (1989).Google Scholar
  105. 105.
    A. Ristamaki, Transforming growth factor alpha stimulates prostacyclin production by cultured human vascular endothelial cells more potently than epidermal growth factor, Biochem. Biophys. Res. Comm. 160: 1100 (1989).Google Scholar
  106. 106.
    K. Frasier-Scott, H. Hatzakis, D. Seong, C. Jones, and K. Wu, Influence of natural and recombinant interleukin 2 on endothelial cell arachidonate metabolism: induction of de novo synthesis of prostaglandin H synthase, J. Clin. Invest. 82: 1877 (1988).PubMedGoogle Scholar
  107. 107.
    H. Endo, T. Akahoshi, and S. Kashiwazaki, Additive effects of IL-1 and TNF on induction of prostacyclin synthesis in human vascular endothelial cells, Biochem. Biophys. Res. Comm. 156: 1007 (1988).PubMedGoogle Scholar
  108. 108.
    J. Pfeilschifter, W. Pignat, K. Vosbeck, and F. Marki, Interleukin-1 and tumor necrosis factor synergistically stimulate prostaglandin synthesis and phospholipase A2 release from rat renal mesangial cells, Biochem. Biophys. Res. Comm. 159: 385 (1989).PubMedGoogle Scholar
  109. 109.
    P. Libby, S. Warner, and G. Friedman, Interleukin I: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids, J. Clin. Invest. 81: 487 (1988).PubMedGoogle Scholar
  110. 110.
    T. Akahoshi, J. Oppenheim, and K. Matsushima, Interleukin 1 stimulates its own receptor expression on human fibroblasts through the endogenous production of prostaglandins), J. Clin. Invest. 82: 1219 (1988).PubMedGoogle Scholar
  111. 111.
    S. Kunkel, and S. Chensue, Arachidonic acid metabolites regulate interleukin-1 secretion, Biochem. Biophys. Res. Comm. 128: 892 (1985).PubMedGoogle Scholar
  112. 112.
    J. Horiguchi, D. Spriggs, K. Imamura, R. Stone, R. Luebbers, and D. Kufe, Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester, Mol. Cell. Biol. 9: 252 (1989).PubMedGoogle Scholar
  113. 113.
    L. Gagnon, L. Filion, C. Dubois, and M. Rola-Pleszczynski, Leukotrienes and macrophage activation: augmented cytotoxic activity and enhanced interleukin 1, tumor necrosis factor, and hydrogen peroxide production, Agents and Actions 26: 142 (1989).Google Scholar
  114. 114.
    M. Sherman, B. Weber, R. Datta, and D. Kufe, Transcriptional and posttranscriptional regulation of macrophage-specific colony stimulating factor gene expression by tumor necrosis factor. Involvement of arachidonic acid metabolites, J. Clin. Invest. 85: 442 (1990).PubMedGoogle Scholar
  115. 115.
    L. Williams, Signal transduction by the platelet-derived growth factor, Science 243: 1564 (1989).PubMedGoogle Scholar
  116. 116.
    Y. Zhang, J. Lin, Y. Yip, and J. Vilcek, Enhancement of cAMP levels and of protein kinase activity by tumor necrosis factor and interleukin 1 in human fibroblasts: role in the induction of interleukin 6, Proc. Natl. Acad. Sci. USA 85: 6802 (1988).PubMedGoogle Scholar
  117. 117.
    H. Pfannkuche, V. Kaever, and K. Resch, A possible role of protein kinase C in regulating prostaglandin synthesis of mouse peritoneal macrophages, Biochem. Biophys. Res. Comm. 139: 604 (1986).PubMedGoogle Scholar
  118. 118.
    J. Channon, and C. Leslie, A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macropahge cell line RAW 264.7, J. Biol. Chem. 265: 5409 (1990).PubMedGoogle Scholar
  119. 119.
    J. Balsinde, B. Fernandez, and E. Diez, Regulation of arachidonic acid release in mouse peritoneal macrophages. The role of extracellular calcium and protein kinase C, J.Immunol. 144: 4298 (1990).PubMedGoogle Scholar
  120. 120.
    B. Undem, T. Torphy, D. Goldman, and F. Chilton, Inhibition by adenosine 3′: 5′-monophosphate of eicosanoid and platelet-activating factor biosynthesis in the mouse PT-18 mast cell, J. Biol. Chem. 265: 6750 (1990).PubMedGoogle Scholar
  121. 121.
    M. Huang, and G. Drummond, Adenylate cyclase in cerebral microvessels: effect of guanine nucleotides, adenosine, and other agonists, Molecul. Pharm. 16: 462 (1979).Google Scholar
  122. 122.
    K. Southgate, and A. Newby, Serum-induced proliferation of rabbit aortic smooth muscle cells from the contractile state is inhibited by 8-Br-cAMP but not 8-Br-cGMP, Athero 82: 113 (1990).Google Scholar
  123. 123.
    Y. Fukumoto, Y. Kawahara, K. Kariya, S. Araki, H. Fukuzaki, and Y. Takai, Independent inhibition of DNA synthesis by protein kinase C, cyclic AMP and interferon alpha/beta in rabbit aortic smooth muscle cells, Biochem. Biophys. Res. Comm. 157: 337 (1988).PubMedGoogle Scholar
  124. 124.
    R. Stout, Cyclic AMP: a potent inhibitor of DNA synthesis in cultured arterial endothelial and smooth muscle cells, Diabetologia 22: 51 (1982).PubMedGoogle Scholar
  125. 125.
    N. Heldin, Y. Paulsson, K. Forsberg, C. Heldin, and B. Westermark, Induction of cyclic AMP synthesis is followed by a reduction in the expression of c-myc messenger RNA and inhibition of 3H-thymidine incorporation in human fibroblasts, J. Cell. Phvsiol. 138: 17 (1989).Google Scholar
  126. 126.
    T. Daniel, V. Gibbs, D. Milfray, and L. Williams, Agents that increase cAMP accumulation block endothelial c-sis induction by thrombin and transforming growth factor-b, J. Biol. Chem. 262: 11893 (1987).PubMedGoogle Scholar
  127. 127.
    W. Kavanaugh, G. Harsh, N. Starksen, C. Rocco, and L. Williams, Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular endothelial cells, J. Biol. Chem. 263: 8470 (1988).PubMedGoogle Scholar
  128. 128.
    J. Khoo, E. Mahoney, and D. Steinberg, Neutral cholesterol esterase activity and its enhancement of cAMP-dependent protein kinase, J. Biol. Chem. 256: 12659 (1981).PubMedGoogle Scholar
  129. 129.
    J. Auwerx, A. Chait, G. Wolfbauer, and S. Deeb, Involvement of second messengers in regulation of the low-density lipoprotein receptor gene, Mol. Cell. Biol. 9: 2298 (1989).PubMedGoogle Scholar
  130. 130.
    J. Auwerx, A. Chait, and S. Deeb, Regulation of the low density lipoprotein receptor and hydroxymethylglutaryl coenzyme A reductase genese by protein kinase C and a putative negative regulatory protein, Proc. Natl. Acad. Sci. USA 86: 1133 (1989).PubMedGoogle Scholar
  131. 131.
    W. Krone, P. Kaczmarczyk, D. Muller-Wieland, and H. Greten, The prostacyclin analog iloprost and prostaglandin E1 suppress sterol synthesis in freshly isolated human mononuclear leukocytes, Biochim.Biophys.Acta 835: 154 (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenneth B. Pomerantz
    • 1
  • David P. Hajjar
    • 2
  1. 1.Departments of MedicineCornell University Medical CollegeNew YorkUSA
  2. 2.Pathology, and Biochemistry and the National Institutes of Health Specialized Center of Research in ThrombosisCornell University Medical CollegeNew YorkUSA

Personalised recommendations