Skip to main content

Role of Eicosanoids and the Cytokine Network in Transmembrane Signaling in Vascular Cells

  • Chapter
Cell-Cell Interactions in the Release of Inflammatory Mediators

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 314))

Abstract

The concept that atherosclerosis is an inflammatory response to injury is based on observations that cells of monocytic origin, including macrophages and T-cells populate the developing atherosclerotic lesion. This is in addition to the well-characterized smooth muscle cell infiltrate1. Since endothelial cell activation or injury is a prerequisite for monocyte adhesion and diapedesis, the histologic evidence described above support the hypothesis that endothelial cell injury is an important initial event in the development of the inflammatory lesion. Activation or injury may thus initiate a series of process that lead to intimai hyperplasia and choiesteryl ester deposition within the macrophage and smooth muscle cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Davies, Biology of Disease: Vascular cell interactions with special reference to the pathgenesis of atherosclerosis, Lab. Invest. 55: 5 (1986).

    PubMed  CAS  Google Scholar 

  2. D. Falcone, D. Hajjar, and C. Minick, Enhancement of cholesterol and cholesteryl ester accumulation in re-endothelialized aorta, Amer. J. Pathol. 99: 81 (1980).

    CAS  Google Scholar 

  3. D. Hajjar, D. Falcone, S. Fowler, and C. Minick, Endothelium modifies the altered metabolism of the injured aortic wall, Amer. J. Pathol. 102: 28 (1981).

    CAS  Google Scholar 

  4. R. Cotran, and J. Pober, Effects of cytokines on vascular endothelium: their role in vascular and immune injury, Kidney Int. 35: 969 (1989).

    PubMed  CAS  Google Scholar 

  5. P. Dawson, S. Hofmann, D. van de Westhuyzen, T. Sudhof, M. Brown, and J. Goldstein, Sterol-dependent repression of low density lipoprotein receptor promotor mediated by 16-base pair sequence adjacent to binding site for transcription factor Spl, J. Biol. Chem. 263: 3372 (1988).

    PubMed  CAS  Google Scholar 

  6. M. Brown, and J. Goldstein, A receptor-mediated pathway for cholesterol homeostasis, Science 232: 34 (1986).

    PubMed  CAS  Google Scholar 

  7. T. Kodama, M. Freeman, L. Rohrer, J. Zabrecky, P. Matsudaira, and M. Krieger, Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils, Nature 343: 531 (1990).

    PubMed  CAS  Google Scholar 

  8. O. Stein, J. Vanderhoek, and Y. Stein, Cholesterol content and sterol synthesis in human skin fibroblasts and rat aortic smooth muscle cells exposed to lipoprotein-depleted serum and high density apoprotein/phospholipid mixtures, Biochim.Biophys.Acta 431: 347 (1976).

    PubMed  CAS  Google Scholar 

  9. R. Ross, J. Glomset, B. Kariya, and L. Harker, A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro, Proc. Natl. Acad. Sci. USA 71: 1207 (1974).

    PubMed  CAS  Google Scholar 

  10. J. Fingerle, R. Johnson, A. Clowes, M. Majesky, and M. Reidy, Role of platelets in smooth muscle proliferation and migration after vascular injury in rat carotid artery, Proc. Natl. Acad. Sci. USA 86: 8412 (1989).

    PubMed  CAS  Google Scholar 

  11. G. Grotendorst, H. Seppa, H. Kleinman, and G. Martin, Attachment of smooth muscle cells to collagen and their migration toward platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 78: 3669 (1981).

    PubMed  CAS  Google Scholar 

  12. J. Nakao, H. Ito, W. Chang, Y. Koshihara, and S. Murota, Aortic smooth muscle cell migration caused by platelet-derived growth factor is mediated by lipoxygenase product(s) of arachidonic acid, Biochem. Biophys. Res. Comm. 112: 866 (1983).

    PubMed  CAS  Google Scholar 

  13. C. Walker, D. Bowen-Pope, R. Ross, and M. Reidy, Production of platelet-derived growth factor-like molecules by cultured arterial smooth muscle cells accompanies proliferation after arterial injury, Proc. Natl. Acad. Sci. USA 83: 7311 (1986).

    PubMed  CAS  Google Scholar 

  14. J. Wilcox, K. Smith, L. Williams, S. Schwartz, and D. Gordon, Platelet-derived growth factor mRNA detection in human atherosclerotic plaques by in situ hybridization, J. Clin. Invest. 82: 1134 (1988).

    PubMed  CAS  Google Scholar 

  15. T. Barrett, and E. Benditt, sis (platelet-derived growth factor B chain) gene transcript levels are elevated in human atherosclerotic lesions compared to normal artery, Proc. Natl. Acad. Sci. USA 84: 1099 (1987).

    PubMed  CAS  Google Scholar 

  16. K. Pietila, and T. Nikkari, Enhanced growth of smooth muscle cells from atherosclerotic rabbit aortas in culture, Athero 36: 241 (1980).

    CAS  Google Scholar 

  17. R. Ross, J. Masuda, E. Raines, A. Gown, S. Kutsuda, M. Sasahara, L. Maiden, H. Masuko, and H. Sato, Localization of PDGF-B chain in macrophages in all phases of atherogenesis, Science 248: 1009 (1990).

    PubMed  CAS  Google Scholar 

  18. M. Klagsbrun, and E. Edelman, Biological and biochemical properties of fibroblast growth factors. Implications for the pathogenesis of atherosclerosis, Arterio. 9: 269 (1989).

    CAS  Google Scholar 

  19. C. Gay, and J. Winkles, Heparin-binding growth factor-I stimulation of human endothelial cells induces platelet-derived growth factor A-chain gene expression, J. Biol. Chem. 265: 3284 (1990).

    PubMed  CAS  Google Scholar 

  20. A. Chait, R. Ross, J. Albers, and E. Bierman, Platelet-derived growth factor stimulates activity of low density lipoprotein receptors, Proc. Natl. Acad. Sci. USA 77: 4084 (1980).

    PubMed  CAS  Google Scholar 

  21. P. Davies, and C. Kerr, Modification of low density lipoprotein metabolism by growth factors in cultures of vascular endothelial cells and human skin fibroblasts, Biochim.Biophys.Acta 712: 26 (1982).

    PubMed  CAS  Google Scholar 

  22. T. Mazzone, K. Basheerruddin, L. Ping, S. Frazer, and G. Getz, Mechanism of growth-related activation of the low density lipoprotein receptor pathway, J. Biol. Chem. 264: 1787 (1989).

    PubMed  CAS  Google Scholar 

  23. P. Davies, and R. Ross, Mediation of pinocytosis in cultured arterial smooth muscle and endothelial cells by platelet-derived growth factor, J. Cell Biol. 79: 663 (1978).

    PubMed  CAS  Google Scholar 

  24. K. Suzuki, M. Hara, A. Kitani, M. Haragai, K. Norioka, K. Kondo, F. Hirata, N. Sakata, M. Kawakami, M. Kawagoe, and H. Nakamura, Augmentation of LDL receptor activities on lymphocytes by interleukin-2 and anti-CD3 antibody: a flow cytometric analysis, Biochim.Biophys.Acta 1042: 352 (1990).

    PubMed  CAS  Google Scholar 

  25. D. Hajjar, A. Marcus, and K. Hajjar, Interactions of arterial cells: studies on the mechanisms of endothelial cell modulation of cholesterol metabolism in co-cultured smooth muscle cells, J. Biol. Chem. 262: 6976 (1987).

    PubMed  CAS  Google Scholar 

  26. A. Nicholson, and D. Hajjar, Transforming growth factor-beta: effects on smooth muscle cell growth and cholesterol metabolism, FASEB J. 3: A612 (1989). (Abstract)

    Google Scholar 

  27. B. Feinberg, R. Kurzrock, M. Talpaz, M. Blick, and S. Saks, A phase-I trial of intravenously-administered recombinant tumor necrosis factor in cancer patients, J. Clin. Oncol. 6: 1328 (1988).

    PubMed  CAS  Google Scholar 

  28. A. Wilson, R. Schaub, R. Goldstein, and P. Kuo, Suppression of aortic atherosclerosis in cholesterol-fed rabbits by purified rabbit interferon, Arterio. 10: 208 (1990).

    CAS  Google Scholar 

  29. T. Issekutz, Effects of six different cytokines on lymphocyte adherence to microvascular endothelium and in vivo lymphocyte migration in the rat, J.Immunol. 144: 2140 (1990).

    PubMed  CAS  Google Scholar 

  30. K. Shinjo, S. Tsuda, T. Hayama, T. Asahi, and H. Kawaharada, Increase in permeability of human endothelial cell monolayer by recombinant human lymphotoxin, Biochem. Biophys. Res. Comm. 162: 1431 (1989).

    PubMed  CAS  Google Scholar 

  31. S. Zuckerman, and Y. Surprenant, Induction of endothelial cell/macrophage procoagulant activity: synergistic stimulation by gamma interferon and granulocyte-macrophage colony stimulating factor, Thomb. Haemo. 61: 178 (1989).

    CAS  Google Scholar 

  32. J. Masuyama, N. Minato, and S. Kano, Mechanisms of lymphocyte adhesion to human vascular endothelial cells in culture. T-lymphocyte adhesion to endothelial cell HLD-DR antigens induced by gamma interferon, J. Clin. Invest. 77: 1596 (1986).

    PubMed  CAS  Google Scholar 

  33. C. Hicks, S. Breit, and R. Penny, Response of microvascular endothelial cells to biological response modifiers, fiflmunol. Cell Biol. 67: 271 (1989).

    CAS  Google Scholar 

  34. E. Raines, S. Downer, and R. Ross, Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA, Science 243: 393 (1989).

    PubMed  CAS  Google Scholar 

  35. G. Hansson, M. Hellstrand, L. Rymo, L. Rubbia, and G. Gabbiani, Interferon-gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells, J. Exptl. Med. 170: 1595 (1989).

    CAS  Google Scholar 

  36. H. Sawada, M. Kan, and W. McKeehan, Opposite effects of monokines (interleukin-1 and tumor necrosis factor) on proliferation and heparin-binding (fibroblast) growth factor binding to human aortic endothelial and smooth muscle cells, In Vitro 26: 213 (1990).

    CAS  Google Scholar 

  37. A. Fogelman, J. Seager, M. Haberland, M. Hokom, R. Tanaka, and P. Edwards, Lymphocyte-conditioned medium protects human mono-cyte-macrophages from cholesteryl ester accumulation, Proc. Natl. Acad. Sci. USA 79: 922 (1982).

    PubMed  CAS  Google Scholar 

  38. B. Van Lentin, A. Fogelman, J. Seager, E. Ribi, M. Haberland, and P. Edwards, Bacterial endotoxin selectively prevents the expression of scavenger-receptor activity on human monocyte-macrophages, J.Immunol. 134: 3718 (1985).

    Google Scholar 

  39. K. Pomerantz, and D. Hajjar, Eicosanoids in regulation of arterial smooth muscle cell phenotype, proliferative capacity, and cholesterol metabolism, Arterio. 9: 413 (1989).

    CAS  Google Scholar 

  40. J. Wang, Y. Lu, Z. Guo, E. Zhen, and F. Shi, Lipid peroxides, glutathione peroxidase, prostacyclin and cell cycle stages in normal and atherosclerotic Japanese quail arteries, Athero 75: 219 (1989).

    CAS  Google Scholar 

  41. R. Gryglewski, E. Kosta-Trabka, A. Deminska-Kiec, and R. Korbut, Prostacyclin and atherosclerosis — experimental and clinical approaches, Adv. Expt. Med. Biol. 243: 21 (1988).

    CAS  Google Scholar 

  42. S. Akopov, A. Orekhov, V. Tertov, K. Khashimov, E. Gabrielyan, and V. Smirnov, Stable analogues of prostacyclin and throm-boxane A2 display contradictory influences on atherosclerotic properties of cells cultured from human aorta, Athero 72: 245 (1988).

    CAS  Google Scholar 

  43. E. Jaffe, Cell biology of endothelial cells, Hum. Pathol. 18: 234 (1987).

    PubMed  CAS  Google Scholar 

  44. K. Pritchard, P. Wong, and M. Sternerman, Atherogenic concentrations of low density lipoprotein enhance endothelial cell generation of epoxyeicosatrienoic acid products, Amer. J. Pathol. in press:(1990).

    Google Scholar 

  45. S. Feinmark, and P. Cannon, Endothelial cell leukotriene C4 synthesis results from intercellular transfer of leukotriene A4 synthesized by polymorphonuclear leukocytes, J. Biol. Chem. 261: 16466 (1986).

    PubMed  CAS  Google Scholar 

  46. M. Clark, D. Littlejohn, S. Mong, and S. Crooke, Effect of leukotrienes, bradykinin, and calcium ionophore (A-23187) on bovine endothelial cells: release of prostacyclin, Prostaglandins 31: 157 (1986).

    PubMed  CAS  Google Scholar 

  47. S. Moore, L. Prokuski, P. Figard, A. Spector, and M. Hart, Murine cerebral microvascular endothelium incorporate and metabolize 12-hydroxyeicosatetraenoic acid, J. Cell. Phvsiol. 137: 75 (1988).

    CAS  Google Scholar 

  48. S. Hong, T. Carty, and D. Deykin, Tranylcypromine and 15-hydrop-eroxyarachidonate affect arachidonic acid release in addition to inhibition of prostacyclin synthesis in calf aortic endothelial cells, J. Biol. Chem. 255: 9538 (1980).

    PubMed  CAS  Google Scholar 

  49. T. Kanayasu, J. Nakao-Hayashi, N. Asuwa, I. Mirota, T. Ishii, H. Ito, and S. Murota, Leukotriene C4 stimulates angiogenesis in bovine carotid artery endothelial cells in vitro, Biochem. Biophys. Res. Comm. 159: 572 (1989).

    PubMed  CAS  Google Scholar 

  50. D. Leszczynski, and P. Hayry, Eicosanoids are regulatory molecules in gamma-interferon-induced endothelial antigenicity and adherence for leukocytes, FEBS Letters 242: 383 (1989).

    PubMed  CAS  Google Scholar 

  51. J. Palmblad, P. Lindstrom, and R. Lerner, Leukotriene B4-induced hyperadhesiveness of endothelial cells for neutrophils, Biochem. Biophys. Res. Comm. 166: 848 (1990).

    PubMed  CAS  Google Scholar 

  52. T. Casale, and M. Abbas, Comparison of leukotriene B4-induced neutrophil migration through different cellular barriers, American Journal of Physiology 258: C639 (1990).

    PubMed  CAS  Google Scholar 

  53. K. Honn, I. Grossi, L. Fitzgerald, L. Umbarger, C. Diglio, and J. Taylor, Lipoxygenase products regulate IRGpIIb/IIIa receptor adhesion of tumor cells to endothelial cells, subendothelial matrix and fibronectin, Proc. Soc. Exptl. Biol. Med. 189: 130 (1988).

    CAS  Google Scholar 

  54. M. Buchanan, M. Vazquez, and M. Gimbrone, Arachidonic acid metabolism and the adhesion of human polymorphonuclear leukocytes to cultured vascular endothelial cells, Blood 62: 889 (1983).

    PubMed  CAS  Google Scholar 

  55. K. Pritchard, R. Tota, M. Stemerman, and P. Wong, 14, 15-Epoxyeicosatetraenoic acid promotes endothelial cell dependent adhesion of human monocytic tumor U937 cells, Biochem. Biophys. Res. Comm. 167: 137 (1990).

    PubMed  CAS  Google Scholar 

  56. M. Perlman, A. Johnson, W. Jubiz, and A. Malik, Lipoxygenase products induce neutrophil activation and increase endothelial permeability after thrombin-induced pulmonary microembolism, Circ. Res. 64: 62 (1989).

    PubMed  CAS  Google Scholar 

  57. J. Gudgeon, and W. Martin, Modulation of arterial permeability: studies on an in vitro model, Br. J. Pharmacol. 98: 1267 (1989).

    PubMed  CAS  Google Scholar 

  58. K. Pomerantz, and D. Hajjar, Eicosanoid metabolism in cholesterol-enriched arterial smooth muscle cells: reduced arachidonate release with concommitant decrease in cyclooxygenase products, J. Lipid. Res. 30: 1219 (1989).

    PubMed  CAS  Google Scholar 

  59. J. Bailey, R. Bryant, J. Whiting, and K. Salata, Characterization of 11-HETE and 15-HETE, together with prostacyclin, as major products of the cyclooxygenase pathway in cultured rat aorta smooth muscle cells, J. Lipid. Res. 24: 1419 (1983).

    PubMed  CAS  Google Scholar 

  60. S. Feinmark, and P. Cannon, Vascular smooth muscle cell leukotriene C4 synthesis: requirement for transcellular leukotriene A4 metabolism, Biochim.Biophys.Acta 922: 125 (1987).

    PubMed  CAS  Google Scholar 

  61. J. Thyberg, U. Hedin, M. Sjolund, L. Palmberg, and B. Bottger, Regulation of differentiated properties and proliferation of arterial smooth muscle cells, Arterio. 10: 966 (1990).

    CAS  Google Scholar 

  62. M. Sjolund, J. Nilsson, L. Palmberg, and J. Thyberg, Phenotype modulation of primary cultures of arterial smooth muscle cells. Dual effect of prostaglandin E1, Differentiation 27: 158 (1984).

    PubMed  CAS  Google Scholar 

  63. J. Larrue, D. Daret, J. Demond-Henri, C. Allieres, and H. Bricaud, Prostacyclin synthesis in proliferative aortic smooth muscle cells. A kinetic in vivo and in vitro study, Athero 50: 63 (1984).

    CAS  Google Scholar 

  64. L. Palmberg, H. Claesson, and J. Thyberg, Effect of leukotrienes on phenotypic properties and growth of arterial smooth muscle cells in primary culture, J. Cell Sci. 93: 403 (1989).

    PubMed  CAS  Google Scholar 

  65. J. Nakao, T. Ooyama, H. Ito, W. Chang, and S. Murota, Comparative effect of lipoxygenase products of arachidonic acid on rat aortic smooth muscle cell migration, Athero 44: 339 (1982).

    CAS  Google Scholar 

  66. J. Hirusumi, A. Nomoto, Y. Ohkubo, C. Sekiguchi, S. Mutoh, I. Yamaguchi, and H. Aoki, Inflammatory responses in cuffinduced atherosclerosis in rabbits, Athero 64: 243 (1987).

    Google Scholar 

  67. H. Sinzinger, T. Zidek, P. Fitscha, J. O’Grady, O. Wagner, and J. Kaliman, Prostaglandin I2 reduces activation of human arterial smooth muscle cells in vivo, Prostaglandins 33: 915 (1987).

    PubMed  CAS  Google Scholar 

  68. Y. Uehara, T. Ishimitsu, K. Kimura, M. Ishii, T. Ikeda, and T. Sugimoto, Regulatory effects of eicosanoids on thymidine uptake by vascular smooth muscle cells of rats, Prostaglandins 36: 847 (1988).

    PubMed  CAS  Google Scholar 

  69. J. Nilsson, and A. Olsson, Prostaglandin E1 inhibits DNA synthesis in arterial smooth muscle cells stimulated with platelet-derived growth factor, Athero 53: 77 (1984).

    CAS  Google Scholar 

  70. L. Palmberg, H. Claesson, and J. Thyberg, Leukotrienes stimulate initiation of DNA synthesis in cultured arterial smooth muscle cells, J. Cell Sci. 88: 151 (1987).

    PubMed  CAS  Google Scholar 

  71. M. Clark, D. Littlejohn, T. Conway, S. Mong, S. Steiner, and S. Crooke, Leukotriene D4 treatment of bovine aortic endothelial cells and murine smooth muscle cells in culture results in an increase in phospholipase A2 activity, J. Biol. Chem. 261: 10713 (1986).

    PubMed  CAS  Google Scholar 

  72. D. Smith, A. Willis, and I. Mahmud, Eicosanoid effects on cell proliferation in vitro: relevance to atherosclerosis, Prosta. Leuko. Med. 16: 1 (1984).

    CAS  Google Scholar 

  73. D. Hajjar, B. Weksler, D. Falcone, J. Hefton, K. Tack-Goldman, and C. Minick, Prostacyclin modulates cholesteryl ester hydrolytic activity by its effect on cyclic adenosine mono-phosphate in rabbit aortic smooth muscle cells, J. Clin. Invest. 70: 479 (1982).

    PubMed  CAS  Google Scholar 

  74. D. Hajjar, C. Minick, and S. Fowler, Arterial neutral cholesteryl esterase. A hormone-sensitive enzyme distinct from the lysosomal enzyme, J. Biol. Chem. 258: 192 (1983).

    PubMed  CAS  Google Scholar 

  75. D. Hajjar, A. Marcus, and O. Etingin, Platelet-Neutrophil-Smooth Muscle Cell Interactions: Lipoxygenase-derived mono-and dihydroxy acids activate cholesteryl ester hydrolysis by the cyclic AMP dependent protein kinase cascade, Biochem. 28: 8885 (1989).

    CAS  Google Scholar 

  76. D. Hajjar, and B. Weksler, Metabolic activity of cholesteryl esters in aortic smooth muscle cells is altered by prostag-landins I2 and E2, J. Lipid. Res. 24: 1176 (1983).

    PubMed  CAS  Google Scholar 

  77. M. Baiter, G. Toews, and M. Peters-Golden, Different patterns of arachidonate metabolism in autologous blood monocytes and alveolar macrophages, J.Immunol. 142: 602 (1989).

    Google Scholar 

  78. G. Cott, J. Westcott, and N. Voelkel, Protaglandin and leukotriene production by alveolar type II cells in vitro, Am. J. Phvsiol. 258: L179 (1990).

    CAS  Google Scholar 

  79. G. Brown, M. Monick, and G. Hunninghake, Human alveolar macrophage arachidonic acid metabolism, Am. J. Phvsiol. 254:C-809 (1988).

    Google Scholar 

  80. C. Rouzer, W. Scott, A. Hammill, and Z. Cohn, Synthesis of leukotriene C and other arachidonic acid metabolites by mouse pulmonary macrophages, J. Exptl. Med. 155: 720 (1982).

    CAS  Google Scholar 

  81. U. Schade, H. Holl, and E. Rietschel, Metabolism of exogenous arachidonic acid by mouse peritoneal macrophages, Prostaglandins 34: 401 (1987).

    PubMed  CAS  Google Scholar 

  82. M. Peters-Golden, R. McNish, J. Brieland, and J. Fantone, Diminished protein kinase C-activated arachidonate metabolism accompanies rat macropahge differentiation in the lung, J.Immunol. 144: 4320 (1990).

    PubMed  CAS  Google Scholar 

  83. V. Kaever, H. Pfannkuche, K. Wessel, and K. Resch, The ratio of macrophage prostaglandin and leukotriene synthesis is determined by the intracellular free calcium level, Biochem. Pharmacol. 39: 1313 (1990).

    PubMed  CAS  Google Scholar 

  84. J. Humes, E. Opas, M. Galavage, D. Soderman, and R. Bonney, Regulation of macrophage eicosanoid production by hydroperoxy-and hydroxy-eicosatetraenoic acids, Biochem. J. 233: 199 (1986).

    PubMed  CAS  Google Scholar 

  85. C. Kadiri, J. Masliah, M. Bachelet, B. Vargftig, and G. Bereziat, Phospholipase A2-mediated release of arachidonic acid in stimulated guinea pig alveolar macrophages: interaction with lipid mediators and cyclic AMP, J. Cell. Biochem. 40: 157 (1989).

    PubMed  CAS  Google Scholar 

  86. C. Tripp, A. Wyche, E. Unanue, and P. Needleman, The functional significance of the regulation of macrophage Ia expression by endogenous arachidonate metabolites in vitro, J.Immunol. 137: 3915 (1986).

    PubMed  CAS  Google Scholar 

  87. F. Ondrey, K. Anderson, D. Hoeltgen, and J. Harris, Differentiation of U937 cells induced by 5, 8, 11, 14 — eicosatetraynoic acid, a competitive inhibitor of arachidonic acid metabolism, Expt. Cell Res. 179: 477 (1988).

    CAS  Google Scholar 

  88. N. Morisaki, T. Kanzaki, M. Kitahara, Y. Saito, and S. Yoshida, Inhibitory effect of prostaglandin E2 on cholesterol ester accumulation in macrophages, Biochem. Biophys. Res. Comm. 137: 461 (1986).

    PubMed  CAS  Google Scholar 

  89. W. Krone, A. Klass, H. Nagele, B. Behnke, and H. Greten, Effect of prostaglandins on LDL receptor activity and cholesterol synthesis in freshly isolated human mononuclear leukocytes, J. Lipid. Res. 29: 1663 (1988).

    PubMed  CAS  Google Scholar 

  90. J. Schroeff, L. Havekes, A. Weerheim, J. Emeis, and B. Vermeer, Suppression of cholesteryl ester accumulation in cultured human monocyte-derived macrophages by lipoxygenase inhibitors, Biochem. Biophys. Res. Comm. 127: 366 (1985).

    PubMed  Google Scholar 

  91. J. Korn, Fibroblast prostaglandin E2 synthesis. Persistance of an abnormal phenotype after short-term exposure to mononuclear cell products, J. Clin. Invest. 71: 1240 (1983).

    PubMed  CAS  Google Scholar 

  92. A. Habernicht, M. Goerig, J. Grulich, D. Rothe, R. Gronwald, U. Loth, G. Schettler, B. Kommerell, and R. Ross, Human platelet-derived growth factor stimulates prostaglandin synthesis by activation and by rapid de novo synthesis of cyclooxygenase, J. Clin. Invest. 75: 1381 (1985).

    Google Scholar 

  93. M. Goerig, A. Habenicht, W. Zeh, P. Salbach, K. Burkhard, D. Rothe, W. Nastainszyk, and J. Glomset, Evidence for coordinate, selective regulation of eicosanoid synthesis in platelet-derived growth factor-stimulated 3T3 fibroblasts and in HL-60 cells induced to differentiate into macrophages or neutrophils, J. Biol. Chem. 263: 19384 (1988).

    PubMed  CAS  Google Scholar 

  94. S. Coughlin, M. Moskowitz, H. Antoniades, and L. Levine, Serotonin receptor-mediated stimulation of bovine smooth muscle cell prostacyclin synthesis and its modulation by platelet-derived growth factor, Proc. Natl. Acad. Sci. USA 78: 7134 (1981).

    PubMed  CAS  Google Scholar 

  95. J. Blay, and M. Hollenberg, Epidermal growth factor stimulation of prostacyclin produciton by cultured aortic smooth muscle cells: requirement for increased cellular calcium levels, J. Cell. Phvsiol. 139: 524 (1989).

    CAS  Google Scholar 

  96. A. Ristimaki, O. Ylikorkala, and L. Viinikka, Effect of growth factors on human vascular endothelial cell prostacyclin production, Arterio. 10: 653 (1990).

    CAS  Google Scholar 

  97. B. Weksler, Heparin and acidic fibroblast growth factor interact to decrease prostacyclin synthesis in human endothelial cells by affecting both prostaglandin H synthase and prostacyclin synthase, J. Cell. Phvsiol. 142: 514 (1990).

    CAS  Google Scholar 

  98. T. Hori, S. Kashiyama, M. Hayakawa, S. Shibamoto, M. Tsujimoto, N. Oku, and F. Ito, Possible role of prostaglandins as negative regulators in growth stimulation by tumor necrosis factor and epiderminal growth factor in human fibroblasts, J. Cell. Phvsiol. 141: 275 (1989).

    CAS  Google Scholar 

  99. F. Breviairio, P. Proserpio, F. Bertocchi, M. Lampugnani, A. Mantovani, and E. Dejana, Interleukin-1 stimulates prostacyclin production by cultured human endothelial cells by increasing mobilization and conversion, Arterio. 10: 129 (1990).

    Google Scholar 

  100. C. Albrightson, N. Baenziger, and P. Needleman, Exaggerated human vascular cell prostaglandin biosynthesis mediated by monocytes: role of monokines and interleukin I, J.Immunol. 135: 1872 (1985).

    PubMed  CAS  Google Scholar 

  101. H. Bull, M. Rustin, J. Spaull, J. Cohen, E. Wilson-Jones, and P. Dowd, Pro-inflammatory mediators induce sustained release of prostaglandin E2 from human dermal microvascular endothelial cells, Br. J. Dermatol. 122: 153 (1990).

    PubMed  CAS  Google Scholar 

  102. M. Rustin, H. Bull, and P. Dowd, Effect of human recombinant interleukin — lα on release of prostacyclin from human endothelial cells, Br. J. Dermatol. 120: 153 (1989).

    PubMed  CAS  Google Scholar 

  103. R. Burch, J. Connor, and J. Axelrod, Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts, Proc. Natl. Acad. Sci. USA 85: 6306 (1988).

    PubMed  CAS  Google Scholar 

  104. L. O’Neill, and G. Lewis, Interleukin-1 potentiates bradykinin-and TNF-alpha-induced PGE2 release, Europ. J. Pharmacol. 166: 131 (1989).

    Google Scholar 

  105. A. Ristamaki, Transforming growth factor alpha stimulates prostacyclin production by cultured human vascular endothelial cells more potently than epidermal growth factor, Biochem. Biophys. Res. Comm. 160: 1100 (1989).

    Google Scholar 

  106. K. Frasier-Scott, H. Hatzakis, D. Seong, C. Jones, and K. Wu, Influence of natural and recombinant interleukin 2 on endothelial cell arachidonate metabolism: induction of de novo synthesis of prostaglandin H synthase, J. Clin. Invest. 82: 1877 (1988).

    PubMed  CAS  Google Scholar 

  107. H. Endo, T. Akahoshi, and S. Kashiwazaki, Additive effects of IL-1 and TNF on induction of prostacyclin synthesis in human vascular endothelial cells, Biochem. Biophys. Res. Comm. 156: 1007 (1988).

    PubMed  CAS  Google Scholar 

  108. J. Pfeilschifter, W. Pignat, K. Vosbeck, and F. Marki, Interleukin-1 and tumor necrosis factor synergistically stimulate prostaglandin synthesis and phospholipase A2 release from rat renal mesangial cells, Biochem. Biophys. Res. Comm. 159: 385 (1989).

    PubMed  CAS  Google Scholar 

  109. P. Libby, S. Warner, and G. Friedman, Interleukin I: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids, J. Clin. Invest. 81: 487 (1988).

    PubMed  CAS  Google Scholar 

  110. T. Akahoshi, J. Oppenheim, and K. Matsushima, Interleukin 1 stimulates its own receptor expression on human fibroblasts through the endogenous production of prostaglandins), J. Clin. Invest. 82: 1219 (1988).

    PubMed  CAS  Google Scholar 

  111. S. Kunkel, and S. Chensue, Arachidonic acid metabolites regulate interleukin-1 secretion, Biochem. Biophys. Res. Comm. 128: 892 (1985).

    PubMed  CAS  Google Scholar 

  112. J. Horiguchi, D. Spriggs, K. Imamura, R. Stone, R. Luebbers, and D. Kufe, Role of arachidonic acid metabolism in transcriptional induction of tumor necrosis factor gene expression by phorbol ester, Mol. Cell. Biol. 9: 252 (1989).

    PubMed  CAS  Google Scholar 

  113. L. Gagnon, L. Filion, C. Dubois, and M. Rola-Pleszczynski, Leukotrienes and macrophage activation: augmented cytotoxic activity and enhanced interleukin 1, tumor necrosis factor, and hydrogen peroxide production, Agents and Actions 26: 142 (1989).

    Google Scholar 

  114. M. Sherman, B. Weber, R. Datta, and D. Kufe, Transcriptional and posttranscriptional regulation of macrophage-specific colony stimulating factor gene expression by tumor necrosis factor. Involvement of arachidonic acid metabolites, J. Clin. Invest. 85: 442 (1990).

    PubMed  CAS  Google Scholar 

  115. L. Williams, Signal transduction by the platelet-derived growth factor, Science 243: 1564 (1989).

    PubMed  CAS  Google Scholar 

  116. Y. Zhang, J. Lin, Y. Yip, and J. Vilcek, Enhancement of cAMP levels and of protein kinase activity by tumor necrosis factor and interleukin 1 in human fibroblasts: role in the induction of interleukin 6, Proc. Natl. Acad. Sci. USA 85: 6802 (1988).

    PubMed  CAS  Google Scholar 

  117. H. Pfannkuche, V. Kaever, and K. Resch, A possible role of protein kinase C in regulating prostaglandin synthesis of mouse peritoneal macrophages, Biochem. Biophys. Res. Comm. 139: 604 (1986).

    PubMed  CAS  Google Scholar 

  118. J. Channon, and C. Leslie, A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macropahge cell line RAW 264.7, J. Biol. Chem. 265: 5409 (1990).

    PubMed  CAS  Google Scholar 

  119. J. Balsinde, B. Fernandez, and E. Diez, Regulation of arachidonic acid release in mouse peritoneal macrophages. The role of extracellular calcium and protein kinase C, J.Immunol. 144: 4298 (1990).

    PubMed  CAS  Google Scholar 

  120. B. Undem, T. Torphy, D. Goldman, and F. Chilton, Inhibition by adenosine 3′: 5′-monophosphate of eicosanoid and platelet-activating factor biosynthesis in the mouse PT-18 mast cell, J. Biol. Chem. 265: 6750 (1990).

    PubMed  CAS  Google Scholar 

  121. M. Huang, and G. Drummond, Adenylate cyclase in cerebral microvessels: effect of guanine nucleotides, adenosine, and other agonists, Molecul. Pharm. 16: 462 (1979).

    CAS  Google Scholar 

  122. K. Southgate, and A. Newby, Serum-induced proliferation of rabbit aortic smooth muscle cells from the contractile state is inhibited by 8-Br-cAMP but not 8-Br-cGMP, Athero 82: 113 (1990).

    CAS  Google Scholar 

  123. Y. Fukumoto, Y. Kawahara, K. Kariya, S. Araki, H. Fukuzaki, and Y. Takai, Independent inhibition of DNA synthesis by protein kinase C, cyclic AMP and interferon alpha/beta in rabbit aortic smooth muscle cells, Biochem. Biophys. Res. Comm. 157: 337 (1988).

    PubMed  CAS  Google Scholar 

  124. R. Stout, Cyclic AMP: a potent inhibitor of DNA synthesis in cultured arterial endothelial and smooth muscle cells, Diabetologia 22: 51 (1982).

    PubMed  CAS  Google Scholar 

  125. N. Heldin, Y. Paulsson, K. Forsberg, C. Heldin, and B. Westermark, Induction of cyclic AMP synthesis is followed by a reduction in the expression of c-myc messenger RNA and inhibition of 3H-thymidine incorporation in human fibroblasts, J. Cell. Phvsiol. 138: 17 (1989).

    CAS  Google Scholar 

  126. T. Daniel, V. Gibbs, D. Milfray, and L. Williams, Agents that increase cAMP accumulation block endothelial c-sis induction by thrombin and transforming growth factor-b, J. Biol. Chem. 262: 11893 (1987).

    PubMed  CAS  Google Scholar 

  127. W. Kavanaugh, G. Harsh, N. Starksen, C. Rocco, and L. Williams, Transcriptional regulation of the A and B chain genes of platelet-derived growth factor in microvascular endothelial cells, J. Biol. Chem. 263: 8470 (1988).

    PubMed  CAS  Google Scholar 

  128. J. Khoo, E. Mahoney, and D. Steinberg, Neutral cholesterol esterase activity and its enhancement of cAMP-dependent protein kinase, J. Biol. Chem. 256: 12659 (1981).

    PubMed  CAS  Google Scholar 

  129. J. Auwerx, A. Chait, G. Wolfbauer, and S. Deeb, Involvement of second messengers in regulation of the low-density lipoprotein receptor gene, Mol. Cell. Biol. 9: 2298 (1989).

    PubMed  CAS  Google Scholar 

  130. J. Auwerx, A. Chait, and S. Deeb, Regulation of the low density lipoprotein receptor and hydroxymethylglutaryl coenzyme A reductase genese by protein kinase C and a putative negative regulatory protein, Proc. Natl. Acad. Sci. USA 86: 1133 (1989).

    PubMed  CAS  Google Scholar 

  131. W. Krone, P. Kaczmarczyk, D. Muller-Wieland, and H. Greten, The prostacyclin analog iloprost and prostaglandin E1 suppress sterol synthesis in freshly isolated human mononuclear leukocytes, Biochim.Biophys.Acta 835: 154 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Pomerantz, K.B., Hajjar, D.P. (1991). Role of Eicosanoids and the Cytokine Network in Transmembrane Signaling in Vascular Cells. In: Wong, P.YK., Serhan, C.N. (eds) Cell-Cell Interactions in the Release of Inflammatory Mediators. Advances in Experimental Medicine and Biology, vol 314. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6024-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6024-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6026-1

  • Online ISBN: 978-1-4684-6024-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics