Skip to main content

Excitation-Contraction Coupling in the Heart

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 308))

Abstract

Muscle contraction is the development of force or of motion by interaction of two complex proteins, actin and myosin. Their interaction results in relative translation of the thick (myosin) and thin (actin) filaments. The interaction is a chemical association between the head of the myosin molecule and the actin molecule, and force or motion results from a bending of the head where it joins the backbone of the myosin molecule. The chemical interaction itself is permitted as a consequence of a cascade of chemical events resulting from binding of Ca2+ to one of a heterotrimeric troponin complex. That interaction causes a change in a tropomyosin molecule, which releases actin sites for reaction with myosin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Niedergerke R. The potassium chloride contracture of the heart and its modification by calcium. J Physiol (Lond) 134: 569, 1956.

    CAS  Google Scholar 

  2. Hodgkin AL, Horowitz P. Potassium contractures in single muscle fibres. J Physiol (Lond) 153: 386, 1960.

    CAS  Google Scholar 

  3. Gibbons WR. Cellular control of cardiac contraction. In: The Heart and Cardiovascular System, H.A. Fozzard, E. Haber, R.B. Jennings, A.M. Katz, H.E. Morgan (eds). New York: Raven Press, pp 747–778, 1986.

    Google Scholar 

  4. Winegrad S. Membrane control of force generation. In: The Heart and Cardiovascular System, H.A. Fozzard, E. Haber, R.B. Jennings, A.M. Katz, H.E. Morgan (eds). New York: Raven Press, pp 703–730, 1986.

    Google Scholar 

  5. Bean B. Two kinds of calcium channels in canine atrial cells. J Gen Physiol 86: 1, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Mitra R, Morad M. Two types of calcium channels in guinea pig ventricular myocytes. Proc Natl Acad Sci 83: 5340, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Fozzard HA. Heart: excitation-contraction coupling. Ann Rev Physiol 39: 201, 1977.

    Article  CAS  Google Scholar 

  8. Morad M, Cleemann L. Role of Ca2+ channel in development of tension in heart muscle. J Mol Cell Cardiol 19: 527, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Fabiato A. Myoplasmic free calcium concentration. J Gen Physiol 78: 457, 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Nabauer et al 1989.

    Google Scholar 

  11. Valdeolmillos M, O’Neill SC, Smith GL, Eisner DA. Calcium-induced calcium release activates contraction in intact cardiac cells. Pflüegers Arch 413: 676, 1989.

    Article  CAS  Google Scholar 

  12. Cannell MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the calcium transient in single rat cardiac muscle cells. Science 238: 1419, 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Barcenas-Ruiz L, Beuckelmann DJ, Wier WG. Sodium-calcium exchange in heart: membrane currents and changes in [Ca2+]i. Science 238: 1720, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Fabiato A. Rapid ionic modifications during the aequorin-detected calcium transient in a skinned canine cardiac Purkinje cell. J Gen Physiol 85: 189, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Campbell KP, Knodson CM, Imagawa T, Leung AT, Sutko JL, Kahl SD, Raab CR, Madson L. Identification and characterization of the high affinity ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem 262: 6460, 1987.

    PubMed  CAS  Google Scholar 

  16. Smith JS, Coronado R, Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum: activation by Cat+, ATP and modulation by Mg2+. J Gen Physiol 88: 573, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Smith JS, Rousseau E, Meissner G. Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ Res 64: 352, 1989.

    PubMed  CAS  Google Scholar 

  18. Rousseau E, Smith JS, Henderson JS, Meissner G. Single channel and Ca2+ flux measurements of the cardiac sarcoplasmic reticulum calcium channel. Biophys J 50: 1009, 1986.

    Article  PubMed  CAS  Google Scholar 

  19. Reuter H, Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol (Lond) 195: 451, 1968.

    CAS  Google Scholar 

  20. Sheu S-S, Fozzard HA. Transmembrane Na+ and Cat + electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol 80: 325, 1982.

    Article  PubMed  CAS  Google Scholar 

  21. Caroni P, Carifoli E. An ATP-dependent Ca2+-pumping system in dog heart sarcolemma. Nature 283: 765, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Fozzard HA, Wasserstrom JA. Voltage dependence of intracellular sodium and control of contraction. In: Cardiac Electrophysiology and Arrhythmias. New York: Grune and Stratton, pp 31–57, 1985.

    Google Scholar 

  23. Im W-B, Lee CO. Quantitative relation of twitch and tonic tensions to intracellular Na+ activity in cardiac Purkinje fibers. Am J Physiol 247: C478, 1984.

    PubMed  CAS  Google Scholar 

  24. Mullins LJ. Ion Transport in the Heart. New York: Raven Press, p 95, 1981.

    Google Scholar 

  25. Brill DM, Fozzard HA, Makielski JC, Wasserstrom JA. Effect of prolonged depolarizations on twitch tension and intracellular sodium activity in sheep cardiac Purkinje fibres. J Physiol (Lond) 384: 355, 1987.

    CAS  Google Scholar 

  26. Bassett AL, Gelband H. Chronic partial occlusion of the pulmonary artery in cats. Circ Res 32: 15, 1973.

    PubMed  CAS  Google Scholar 

  27. Kleinman RB, Hauser SR. Calcium currents in normal and hypertrophied isolated feline ventricular myocytes. Am J Physiol 255: H1434, 1988.

    Google Scholar 

  28. Keung EC. Calcium current is increased in isolated adult myocytes from hypertrophied rat myocardium. Circ Res 64: 753, 1989.

    PubMed  CAS  Google Scholar 

  29. Gwathmey JK, Morgan JP. Altered calcium handling in experimental pressure-overload hypertrophy in the ferret. Circ Res 57: 836, 1985.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Fozzard, H.A. (1991). Excitation-Contraction Coupling in the Heart. In: Cox, R.H. (eds) Cellular and Molecular Mechanisms in Hypertension. Advances in Experimental Medicine and Biology, vol 308. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6015-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6015-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6017-9

  • Online ISBN: 978-1-4684-6015-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics