Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 308))

Abstract

Signals may flow through membranes by a pathway composed of three elements: receptor, G protein and effector. At present we know of about 80 different receptors, about 15 different G proteins and about 15 different effectors (1,2). The primary structures of noradrenergic, dopamine, 5-hydroxytryptamine and rhodopsin receptors are similar indicating that the receptors form a family (2). The predicted secondary structures have seven membrane spanning a helices with the greatest differences among receptors occurring in the cytoplasmic linkers (3). The G proteins also form a family in which heterogeneity resides largely in the a subunits for which some 15 different cDNAs have been described (4,2). Two to four forms of the β subunit have been described and there are at least three forms of the y subunit (4,2). By contrast, the effectors are quite different from each other and there appears to be no homology among adenylyl cyclase (AC) (4), cGMP phosphodiesterase (PDE) and voltage-dependent ionic channels (5,6), although the predicted secondary structures of AC and voltage-gated channels are similar. Within this group, voltage-gated channels clearly are a family (7).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birnbaumer L, Codina J, Mattera R, Yatani A, Scherer N, Toro M-J, and Brown AM. Signal transduction by G proteins. Kidney Intl 32: S14, 1987.

    Google Scholar 

  2. Birnbaumer L, Codina J, Yatani A, Mattera R, Graf R, Olage J, Themmen APN, Liao C-F, Sanford J, Okabe K, Imoto Y, Zhou Z, Abramowitz J, Suki WN, Hamm HE, Iyengar R, Birnbaumer M, and Brown AM. Molecular basis of regulation of ionic channels by G proteins. In: Recent Progress in Hormone Research, Vol. 45, New York: Academic Press, p 121, 1989.

    Google Scholar 

  3. Lefkowitz Rd and Caron MG. Adrenergic receptors. J Biol Chem 263: 9887, 1988.

    Google Scholar 

  4. Gilman AG. G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615, 1987.

    Article  PubMed  CAS  Google Scholar 

  5. Frech GC, VanDongen AMJ, Schuster G, Brown AM, Joho RH. A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature 340: 642, 1989.

    Article  PubMed  CAS  Google Scholar 

  6. Perez-Reyes E, Kim HS, Lacerda AE, Horne W, Wei X, Rampe D, Campbell KP, Brown AM, Birnbaumer L. Induction of calcium currents by the expression of the al-subunit of the dihydropyridine receptor from skeletal muscle. Nature 340: 233, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Numa S, Noda M. Molecular structure of sodium channels. Ann New York Acad Sci 479: 338, 1986.

    Article  CAS  Google Scholar 

  8. Brown AM, Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol 23: H401, 1988.

    Google Scholar 

  9. Yatani A, Brown AM. Rapid ß-adrenergic modulation of cardiac calcium channel currents by a fast G protein pathway. Science 245: 71, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Schubert B, VanDongen AMJ, Kirsch GE, Brown AM. 13-adrenergic inhibition of cardiac sodium channels by dual G protein pathways. Science 245: 516, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Yatani A, Codina J, Brown AM, Birnbaumer L. Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein, Gk. Science 235: 207, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE. G protein beta gamma-subunits activate the cardiac muscarinic K+ channel via phospholipase A2. Nature 337: 557, 1989.

    Article  PubMed  CAS  Google Scholar 

  13. Kurachi Y, Itoh H, Sugimoto T, Shimizu T, Miki I, Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K+ channel. Nature 337: 555, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Brown AM, Birnbaumer L. Ionic channels and their regulation by G protein subunits. Ann Rev Physiol 52: 197, 1990.

    Article  CAS  Google Scholar 

  15. Glitsch HG, Pott L. Effects of acetylcholine and parasympathetic nerve stimulation on membrane potential in quiescent guinea pig atria. J Physiol (Lond) 279: 655, 1978.

    CAS  Google Scholar 

  16. Hill-Smith I, Purves RD. Synaptic delay in the heart: an ionophoretic study. J. Physiol. (Lond) 279: 31, 1978.

    CAS  Google Scholar 

  17. Trautwein W, Taniguchi J, Noma A. The effect of intracellular cyclic nucleotides and calcium on the action potential and acetylcholine response of isolated cardiac cells. Pflügers Arch 392: 307, 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Nargeot J, Nerbonne JM, Engels J, Lester HA. Time course of the increase in the myocardial slow inward current after a photochemically generated concentration jump of intracellular cAMP. Proc Natl Acad Sci USA 80: 2395, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Rosenberg RL, Hess P, Reeves JP, Smilowitz H, Tsien RW. Calcium channels in planar lipid bilayers: insights into mechanisms of ion permeation and gating. Science 231: 1564, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Rosenberger LB, Roeske WR, Yamamura HI. The regulation of muscarinic cholinergic receptors by guanine nucleotides in cardiac tissue. Eur J Pharmacol 56: 179, 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Hazeki O, Ui M. Modification by islet-activating protein of receptor-medicated regulation of cAMP accumulation in isolated rat heart cells. J Biol Chem 256: 2856, 1981.

    PubMed  CAS  Google Scholar 

  22. Kurose H, Ui M. Functional uncoupling of muscarinic receptors from adenylate cyclase in rat cardiac membranes by the active component of islet-activating protein, pertussis toxin. J Cyclic Nucleotide Protein Phosphorylation Res 9: 305, 1983.

    CAS  Google Scholar 

  23. Halvorsen SW, Nathanson NM. Ontogenesis of physiological responsiveness and guanine nucleotide sensitivity of cardiac muscarinic receptors during chick embryonic development. Biochemistry 23: 5813, 1984.

    Article  PubMed  CAS  Google Scholar 

  24. Sakmann B, Noma A, Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart Nature 303: 250, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Soejima M, Noma A. Mode of regulation of the ACh-sensitive K channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400: 424, 1984.

    Article  PubMed  CAS  Google Scholar 

  26. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317: 536, 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Breitwieser GE, Szabo G. Uncoupling of cardiac muscarinic and f3- adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317: 538, 1985.

    Article  PubMed  CAS  Google Scholar 

  28. Kurachi Y, Nakajima T, Sugimoto T. On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflügers Arch 407: 264, 1986.

    Article  PubMed  CAS  Google Scholar 

  29. Kurachi Y, Nakajima T, Sugimoto T. Role of intracellular Mgt+ in the activation of muscarinic K+ channel in cardiac atrial cell membrane. Pflügers Arch 407: 572, 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Kurachi Y, Nakajima T, Sugimoto T. Acetylcholine activation of K+ channels in cell-free membrane of atrial cells. Am J Physiol 251: H681, 1986.

    PubMed  CAS  Google Scholar 

  31. Codina J, Hildebrandt JD, Iyengar R, Birnbaumer L, Sekura RD, Manclark CR. Pertussis toxin substrate, the putative Ni of adenylyl cyclases, is an a/ß heterodimer regulated by guanine nucleotide and magnesium. Proc Natl Acad Sci USA 80: 4276, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Codina J, Hildebrandt JD, Sekura RD, M. Birnbaumer, Bryan J, Manclark CR, Iyengar R, Birnbaumer L. NS and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclases. Purification of the human erythrocyte proteins without the use of activating regulatory ligands. J Biol Chem 259: 5871, 1984.

    PubMed  CAS  Google Scholar 

  33. Codina J, Hildebrandt JD, Birnbaumer L, Sekura RD. Effects of guanine nucleotides and Mg on human erythrocyte Ni and N5f the regulatory components of adenylyl cyclase. J Biol Chem 259: 1 1408, 1984.

    Google Scholar 

  34. Yatani A, Codina J, Brown AM, Birnbaumer L. Direct activation of mammalian atrial muscarinic K channels by a human erythrocyte pertussis toxin-sensitive G protein, Gk. Science 235: 207, 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L. The a subunit of Gk opens atrial potassium channels. Science 236: 442, 1987.

    Article  PubMed  CAS  Google Scholar 

  36. Hamm HE, Deretic D, Hofmann KP, Schleicher A, Kohl B. Mechanism of action of monoclonal antibodies that block the light-activation of guanyl nucleotide binding protein, transducin. J Biol Chem 262: 10831, 1988.

    Google Scholar 

  37. Deretic D, Hamm HE. Topographic analysis of antigenic determinations recognized by monoclonal antibodies to the photoreceptor guanyl nucleotide binding protein, transducin. J Biol Chem 262: 10839, 1988.

    Google Scholar 

  38. Yatani A, Hamm H, Codina J, Mazzoni MR, Birnbaumer L, Brown AM. A monoclonal antibody to the a-subunit of Gk blocks muscarinic activation of atrial K+ channels. Science 241: 828, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Logothetis DE, Kim D, Northup JK, Neer EJ, Clapham E. Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proc Natl Acad Sci USA 85: 5814, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Neer EJ, Clapham DC. Role of G protein subunits in transmembrane signalling. Nature 333: 129, 1988.

    Article  PubMed  CAS  Google Scholar 

  41. Cerbai E, Kloeckner U, Isenberg G. The a-subunit of the GTP binding protein activates muscarinic potassium channels of the atrium. Science 240: 1782, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Piomelli D, Volterra A, Dale N, Siegelbaum SA, Kandel ER, Schwartz JH, Belardetti F. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory neurons. Nature 328: 38, 1987.

    Article  PubMed  CAS  Google Scholar 

  43. Okabe K, Yatani A, Evans T, Codina J, Birnbaumer L, Brown AM. ßy-subunits of G proteins inhibit muscarinic K+ channels in heart. J Biol Chem, submitted, 1989.

    Google Scholar 

  44. Birnbaumer L, Yatani A, Codina J, Mattera R, Graf R, Liao C-F, Themmen A, Sanford J, Hamm H, Iyenger R, Birnbaumer M, Brown AM. Signal transduction by G proteins: Regulation of ion channels as seen with native and recombinant subunits and multiplicity of intramembrane transduction pathways. In: The Molecular and Cellular Endocrinology of the Testis, Cook BA and Sharpe RM (eds), New York: Raven Press, 1988, p 35.

    Google Scholar 

  45. Mattera R, Yatani A, Kirsch GE, Graf R, Olate J, Codina J, Brown AM, Birnbaumer L. Recombinant a-3 subunit of CT protein activates Tk-gated K+ channels. J Biol Chem 264: 465, 1989.

    PubMed  CAS  Google Scholar 

  46. Graziano MP, Casey PJ, Gilman AG. Expression of cDNAs for G proteins in Escherichia coli, two forms of Gsa stimulate adenylate cyclase. J Biol Chem 262: 1 1375, 1987.

    Google Scholar 

  47. Yatani A, Imoto Y, Codina J, Hamilton S, Brown AM, Birnbaumer L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Cat+ channels: evidence for direct regulation independent of phosphorylation. J Biol Chem 263: 9887, 1988.

    PubMed  CAS  Google Scholar 

  48. Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM. Direct regulation of mammalian cardiac calcium channels by a G protein. Science 238: 1288, 1987.

    Article  PubMed  CAS  Google Scholar 

  49. Imoto Y, Yatani A, Reeves JP, Codina J, Birnbaumer L, Brown AM. The a-subunit of Gs directly activates cardiac calcium channels in lipid bilayers. Am J Physiol 255: H722, 1988.

    PubMed  CAS  Google Scholar 

  50. Triggle DJ, Skattebol A, Rampe D, Joclyn A, Gengo P. Chemical pharmacology of Cat+ channel ligands. In: New Insights into Cell and Membrane Transport Processes, Poste G and Crooke ST (eds), New York: Plenum Publishing, pp 125, 1986.

    Chapter  Google Scholar 

  51. Galizzi J-P, Fossett M, Lazdunski M. Properties of receptors for the Cat+ channel blocker verapamil in transverse-tubule membranes of skeletal muscle. Eur J Biochem 144: 211, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Lewis DL, Weight FF, Luini A. A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sci USA 83: 9035, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Holz GG IV, Rane S.G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature 319: 670, 1986.

    Article  PubMed  CAS  Google Scholar 

  54. Scott RH, Dolphin AC. Regulation of calcium currents by a GTP analogue: potentiation of (-)baclofen-mediated inhibition. Neurosci Lett 69: 59, 1986.

    Article  PubMed  CAS  Google Scholar 

  55. Dolphin AC, Scott RH. Calcium channel currents and their inhibition by (-)-baclofen in rat sensory neurones: modulation by guanine nucleotides. J Physiol 386: 1, 1987.

    PubMed  CAS  Google Scholar 

  56. Hescheler J, Rosenthal W, Trautwein W, Schultz G. The GTPbinding protein, Go, regulates neuronal calcium channels. Nature 325: 445, 1987.

    Article  PubMed  CAS  Google Scholar 

  57. Rane SO, Dunlap K. Kinase C activator 1,2-oleylacetyl-glycerol attenuates voltage-dependent calcium current in sensory neurones. Proc Natl Acad Sci USA 83: 184, 1986.

    Article  PubMed  CAS  Google Scholar 

  58. Kameyama M, Hofmann F, Trautwein W. On the mechanism of ßadrenergic regulation of the Ca channel in the guinea pig heart. Pflügers Arch 405: 285, 1985.

    Article  PubMed  CAS  Google Scholar 

  59. Kameyama M, Hescheler J, Hofmann F, Trautwein W. Modulation of Ca current during the phosphorylation cycle in the guinea pig heart. Pflügers Arch 407: 123, 1986.

    Article  PubMed  CAS  Google Scholar 

  60. Ma J, Coronado R. Heterogeneity of conductance states in calcium channels of skeletal muscle. Biophys J 53: 387, 1988.

    Article  PubMed  CAS  Google Scholar 

  61. Cota G, Stefani E. A fast-activated inward calcium current in twitch muscle fiber of the frog (Rana Montezume). J Physiol (Lund) 370: 151, 1986.

    CAS  Google Scholar 

  62. Caffrey J, Brown AM, Schneider MD. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels. Science 236: 570, 1987.

    Article  PubMed  CAS  Google Scholar 

  63. Affolter H, Coronado R. Agonists Bay-K8644 and CGP-28392 open calcium channels reconstituted from skeletal muscle transverse tubules. Biophys J 48: 341, 1985.

    Article  PubMed  CAS  Google Scholar 

  64. Stryer L. Cyclic GMP cascade of vision. Ann Rev Neurosci 9: 87, 1986.

    Article  PubMed  CAS  Google Scholar 

  65. Fesenko EE, Kolesnikov SS, Lyubarsky AL. Induction by cyclic GMP of cationic conductance in plasma membrane rod outer segment. Nature 313: 310, 1985.

    Article  PubMed  CAS  Google Scholar 

  66. Haynes L, Yau KW. Cyclic GMP-sensitive conductance in outer segment membrane of catfish cones. Nature 317: 61, 1985.

    Article  PubMed  CAS  Google Scholar 

  67. Mathews G. Single channel recordings demonstrate that cGMP opens the light sensitive ion channel of the rod photoreceptor. Proc Natl Acad Sci USA 84: 299, 1987.

    Article  Google Scholar 

  68. Flockerzi V, Oeken HJ, Hofmann F, Pelzer D, Cavalie A, Trautwein W. Purified dihydropyridine-binding site from rabbit skeletal muscle t-tubules is a functional calcium channel. Nature 323: 66, 1987.

    Article  Google Scholar 

  69. Dunlap K, Holz GG, Rane SG. G proteins as regulators of ion channel function. TINS 10: 241, 1987.

    PubMed  CAS  Google Scholar 

  70. Berridge MJ, Irvine RF. Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315, 1984.

    Article  PubMed  CAS  Google Scholar 

  71. Petersen OH. Calcium channels. Nature 336: 528, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Soejima M, Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 400: 424, 1984.

    Article  PubMed  CAS  Google Scholar 

  73. Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to Al receptors by G proteins in rat ventricular myocytes. Am J Physiol, 259: H820, 1990.

    PubMed  CAS  Google Scholar 

  74. Ramos-Franco J, Toro L, Stefani E. GTPyS enhances the opening probability of Kca channels from myometrium incorporated into bilayers. Biophys J 55: 536a, 1989.

    Google Scholar 

  75. Scott RH, Dolphin AC, Wooton JF. Photorelease of GTPyS inhibits T-type calcium channel currents in rat dorsal root ganglion neurons. Biophys J 55: 37a, 1986.

    Google Scholar 

  76. DiFrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 324: 470, 1986.

    Article  PubMed  CAS  Google Scholar 

  77. Kirsch GE, Yatani A, Codina J, Birnbaumer L, Brown AM. The a subunit of Gk activates atrial K+ channels of embryonic chick, neonatal rat and adult guinea pig. Am J Physiol 23: H1200, 1988.

    Google Scholar 

  78. Yatani A, Mattera R, Codina J, Graf R, Okabe K, Padrell E, Iyengar R, Brown AM, Birnbaumer L. The G protein-gated atrial K+ channel is stimulated by three distinct Giâ subunits. Nature 336: 680, 1988.

    Article  PubMed  CAS  Google Scholar 

  79. Yatani A, Codina J, Sekura RD, Birnbaumer L, Brown AM. Reconstitution of somatostatin and muscarinic receptor mediated stimulation of K+ channels by isolated Gk protein in clonal rat anterior pituitary cell membranes. Mol Endo 1: 283, 1987.

    Article  CAS  Google Scholar 

  80. Codina J, Grenet G, Yatani A, Birnbaumer L, Brown AM. Hormonal regulation of pituitary GH3 cell K+ channels by Gk is mediated by its alpha subunit. FEBS Letts 216: 104, 1987.

    Article  CAS  Google Scholar 

  81. VanDongen T, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science 242: 1433, 1988.

    Article  PubMed  CAS  Google Scholar 

  82. Yatani A, Codina J, Imoto Y, Reeves JP, Birnbaumer L, Brown AM. A G protein directly regulates mammalian cardiac calcium channels. Science 238: 1288, 1987.

    Article  PubMed  CAS  Google Scholar 

  83. Trautwein W, Cavalie A, Allen TJA, Shuba YM, Pelzer S, Pelzer D. Direct and indirect regulation of cardiac L-type calcium channels by a-adrenoreceptor agonists. In: Advances in Second Messenger and Phosphoprotein Research, Nishizuka Y. (ed), New York: Raven Press, In Press, 1990.

    Google Scholar 

  84. Hesslinger B, McDonald TF, Pelzer D, Shuba Y, Trautwein W. Whole-cell calcium current in guinea-pig ventricular myocytes dialysed with guanine nucleotides. J Physiol, In Press, 1990.

    Google Scholar 

  85. Light DB, Ausiello D, Stanton BA. Guanine nucleotide-binding protein, a-3 directly activates a cation channel in rat renal inner medullary collecting duct cells. J Clin Invest, 84: 352, 1989.

    Article  PubMed  CAS  Google Scholar 

  86. Schwiebert EM, Light DB, Stanton BA. A G protein, G;-3, regulates a chloride channel in renal cortical collecting duct cells. J Gen Physiol 94: 6a, 1989.

    Google Scholar 

  87. Ribalet B, Ciani S, Eddlestone GT. Modulation of ATP-sensitive K channels in RINm5F cells by phosphorylation and G proteins. Biophys J 55: 587a, 1989.

    Google Scholar 

  88. Parent L, Coronado R. Reconstitution of the ATP-sensitive potassium channel of skeletal muscle. Activation by a G protein-dependent process. J Gen Physiol 94: 445, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Brown, A.M. et al. (1991). Regulation of Ionic Channels by G Proteins. In: Cox, R.H. (eds) Cellular and Molecular Mechanisms in Hypertension. Advances in Experimental Medicine and Biology, vol 308. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6015-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6015-5_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6017-9

  • Online ISBN: 978-1-4684-6015-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics