Localization of Cathepsin D in Endosomes: Characterization and Biological Importance

  • Janice S. Blum
  • Maria L. Fiani
  • Philip D. Stahl
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


Proteases were initially identified in endosomes through studies of receptor-ligand transport.1 During receptor-mediated endocytosis, cell surface receptors bind exogenous ligands (Figure 1). These receptor-ligand complexes are internalized by clathrin-coated vesicles, which give rise to endosomes. Shortly after endosome formation, the internal pH of these vesicles drops to between pH 5–6.2 Many internalized receptor-ligand complexes dissociate upon endosome acidification, with the released receptors recycling back to the cell surface. Ligands delivered into endosomes undergo a variety of fates including transport back to the cell surface3 or sorting to different intracellular compartments such as lysosomes and the Golgi.4,5 Susceptible protein ligands are cleaved in endosomes indicating that these vesicles also serve as a processing compartment.1,6,8


Cysteine Protease Lysosomal Enzyme Antigen Processing Aspartic Protease Endosome Acidification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Diment and P. Stahl, Macrophage endosomes contain proteases which degrade endocytosed protein ligands, J. Biol Chem. 260: 15311 (1985).PubMedGoogle Scholar
  2. 2.
    B. Tycko and F. R. Maxfield, Rapid acidification of endocytic vesicles containing α2-macroglobulin, Cell 28: 643 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Tietze, P. Schlesinger and P. Stahl, Mannose-specific endocytosis receptor of alveolar macrophages: Demonstration of two functionally distinct intracellular pools of receptor and their role in receptor recycling, J. Cell Biol. 92: 417 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    J. L. Goldstein, R. G. W. Anderson and M. S. Brown, Coated pits, coated vesicles and receptor-mediated endocytosis, Nature 279: 679 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    M. D. Snider and O. C. Rogers, Intracellular movement of cell surface receptors after endocytosis: Resialylation of asialo-transferrin receptor in human erythroleukemia cells, J. Cell Biol 100: 826 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Roederer, R. Bowser and R. F. Murphy, Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes of low pH: Evidence for a maturation model for the formation of lysosomes, J. Cell Physiol. 131: 200 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    F. G. Hamel, B. I. Posner, J. J. M. Bergeron, B. H. Frank and W. C. Duckworth, Isolation of insulin degradation products from endosomes derived from intact rat liver, J. Biol. Chem. 263: 6703 (1988).PubMedGoogle Scholar
  8. 8.
    J. S. Blum, R. Diaz, S. Diment, M. Fiani, L. Mayorga, J. S. Rodman, P. D. Stahl, Proteolytic processing in endosomal vesicles, Cold Spring Harbor Symposia on Quantitative Biology 54: 287 (1989).PubMedCrossRefGoogle Scholar
  9. 9.
    P. Stahl, P. Schlesinger, E. Sigardson, J. S. Rodman and Y. C. Lee, Receptor-mediated pinocytosis of mannose glycoconjugates by macrophages: Characterization and evidence for receptor recycling, Cell 19: 207 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Wileman, R. L. Boshans, P. Schlesinger and P. Stahl, Monensin inhibits recycling of macrophages and ligand delivery to lysosomes, Biochem. J. 220: 665 (1984).PubMedGoogle Scholar
  11. 11.
    J. S. Blum, M. L. Fiani and P. D. Stahl, Characterization of neutral and acidic proteases in endosomal vesicles, J. Cell Biol. 109: 188a (1989).Google Scholar
  12. 12.
    A. Hasilik and E. F. Neufeld, Biosynthesis of lysosomal enzymes in fibroblasts, J. Biol. Chem. 255: 4937 (1980).PubMedGoogle Scholar
  13. 13.
    S. Diment, M. Leech and P. Stahl, Cathepsin D is membrane-associated in macrophage endosomes, J. Biol. Chem. 263: 6901 (1988).PubMedGoogle Scholar
  14. 14.
    S. Kornfeld and I. Mellman, The biogenesis of lysosomes, Annu. Rev. Cell Biol. 5: 483 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    G. Griffiths, B. Hoflack, K. Simons, I. Mellman and S. Kornfeld, The mannose-6-phosphate receptor and the biogenesis of lysosomes, Cell 52: 329 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    T. Braulke, H. J. Geuze, J. W. Slot, A. Hasilik and K. von Figura, On the effects of weak bases and monensin on sorting and processing of lysosomal enzymes in human cells, Eur. J. Cell Biol. 43: 316 (1987).PubMedGoogle Scholar
  17. 17.
    J. S. Rodman, M. A. Levy, S. Diment and P. D. Stahl, Immunolocalization of endosomal cathepsin D in rabbit aveolar macrophages, J. Leuk. Biol. 48: 116 (1990).Google Scholar
  18. 18.
    L. E. Guagliardi, B. Koppelman, J. S. Blum, M. S. Marks, P. Cresswell and F. M. Brodsky, Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment, Nature 343: 133 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    S. Diment, K. Martin and P. Stahl, Cleavage of parathyroid hormone in macrophage endosomes illustrates a novel pathway for intracellular processing of proteins, J. Biol. Chem. 264: 13403 (1989).PubMedGoogle Scholar
  20. 20.
    K. L. McCoy and R. H. Schwartz, The role of intracellular acidification in antigen processing, Immunol. Rev. 106: 129 (1988).PubMedCrossRefGoogle Scholar
  21. 21.
    E. R. Unanue and P. M. Allen, The basis for the immunoregulatory role of macrophages and other accessory cells, Science 236: 551 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    J. Puri and Y. Factorovich, Selective inhibition of antigen presentation to cloned T cells by protease inhibitors, J. Immunol. 141: 3313 (1988).PubMedGoogle Scholar
  23. 23.
    H. Takahashi, K. B. Clase and J. A. Berzofsky, Identification of proteases that process distinct epitopes on the protein, J. Immunol. 142: 2221 (1989).PubMedGoogle Scholar
  24. 24.
    J. M. van Noort and A. C. M. van der Drift, The selectivity of cathepsin D suggests an involvement of the enzyme in the generation of T-cell epitopes, J. Biol. Chem. 264: 14159 (1989).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Janice S. Blum
    • 1
  • Maria L. Fiani
    • 2
  • Philip D. Stahl
    • 1
  1. 1.Department of Cell Biology and PhysiologyWashington University School of MedicineSaint LouisUSA
  2. 2.Laboratorio di Biologia CellularIstituto Superiore di SanitaRomeItaly

Personalised recommendations