Advertisement

Substrate Specificity Study of Recombinant Rhizopus Chinensis Aspartic Proteinase

  • W. Todd Lowther
  • Zhong Chen
  • Xin-li Lin
  • Jordan Tang
  • Ben M. Dunn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)

Abstract

Rhizopuspepsin, a model aspartic proteinase from the fungus Rhizopus chinensis, has recently been cloned and expressed by Chen et al. (1991). High resolution crystallographic analysis of rhizopuspepsin and complexes with active site ligands has been reported by Davies’ group (Parris et al., this volume). Our initial characterization of the substrate specificity of the active site is described in this report. This study will enable future comparisons between kinetic and crystallographic data from other aspartic proteinases as well as for use in planning and analyzing site-directed mutagenesis studies.

Keywords

Aspartic Proteinase 8452A Diode Array 8452A Diode Array Spectrophotometer Oklahoma Medical Research Foundation Carboxyl Proteinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Z., Koelsch, G., Han, H., Wang, X., Lin. X., Hartsuck, J. & Tang, J., 1991, Recombinant rhizopuspepsinogen; expression, purification, and activation properties of recombinant rhizopuspepsinogens, J. Biol. Chem. in press.Google Scholar
  2. Dunn, B. M, Jimenez, M., Parten, B. F., Valier, M. J., Rolph, C. E. & Kay, J., 1986, A systematic series of synthetic chromophoric substrates for aspartic proteinases, Biochem. J. 237: 899–906.PubMedGoogle Scholar
  3. Dunn, B. M., Valler, M. J., Rolph, C. E., Foundling, S. I., Jimenez, M. & Kay, K., 1987, The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2, Biochim. Biophys. Acta 913: 122–130.PubMedCrossRefGoogle Scholar
  4. Henderson, P., 1972, A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors, Biochem. J. 127: 321–333.PubMedGoogle Scholar
  5. Hofman, T., Allen, B., Bendiner, M., Blum, M. & Cunningham, A., 1988, Biochemistry 27: 1140–1146.CrossRefGoogle Scholar
  6. Meyer, S. L., 1975, “Data Analysis for Scientists and Engineers”, John Wiley and Sons, Inc., New York.Google Scholar
  7. Parris, K. D., Hoover, D. J. & Davies, D. R., 1991, Crystal structures of rhizopuspepsin/inhibitor complexes, this volume.Google Scholar
  8. Rich, D. & Bernatowicz, M, 1982, Synthesis of analogues of the carboxyl proteinase inhibitor pepstatin. Effect of structure in subsite P3 on the inhibition of pepsin, J. Med. Chem. 25: 791–795.PubMedCrossRefGoogle Scholar
  9. Sawyer, T. K., Tomasselli, A. G., Poorman, R. A., Hui, J. O., Hinzmann, J., Staples, D. J., Maggiora, L. L., Smith, C. W. & Heinrikson, R., 1990, Design, structure-activity and specificity of highly potent P1-P1′-modified pseudopeptidyl inhibitors of HIV-1 aspartyl protease, in: “Peptides: Chemistry, Structure and Biology, Proceedings of the Eleventh American Peptide Symposium”, J. E. River and G. R. Marshall, eds., ESCOM Science Publishers B.V., Leiden, The Netherlands.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • W. Todd Lowther
    • 1
  • Zhong Chen
    • 2
  • Xin-li Lin
    • 2
  • Jordan Tang
    • 2
  • Ben M. Dunn
    • 1
  1. 1.Department of Biochemistry and Molecular Biology, J. Hillis Miller Health Center, Box J-245University of FloridaGainesvilleUSA
  2. 2.Protein Studies LaboratoryOklahoma Medical Research FoundationOklahoma CityUSA

Personalised recommendations