A Yeast Expression System and Site-Directed Mutagenesis of a Fungal Aspartic Proteinase, Mucor Rennin

  • Jun-ichi Aikawa
  • Ryuji Hiramatsu
  • Makoto Nishiyama
  • Sueharu Horinouchi
  • Teruhiko Beppu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 306)


The cheese industry has long used a characteristic aspartic proteinase, chymosin (calf rennin) obtained from the calf stomach, as a milk coagulant for cheese making. A severe shortage of chymosin in 1950 stimulated efforts to find substituting microbial enzymes and Arima et al. succeeded in discovering such an enzyme from a fungal strain, Mucor pusillus.1 A similar enzyme was subsequently found from a closely related species, Mucor miehei,2 and these fungal aspartic proteinases are called Mucor rennin. Currently more than a half of cheese in the world is produced with Mucor rennin.


Aspartic Proteinase Recombinant Yeast High Proteolytic Activity Milk Clotting Activity Yeast Expression System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Arima, S. Iwasaki, and G. Tamura, Milk clotting enzyme from microorganisms. Part I. Screening test and the identification of the potent fungus, Agric. Biol. Chem. 31: 540 (1967).CrossRefGoogle Scholar
  2. 2.
    M. Ottensen, and W. Richert, The isolation and partial purification of an acid protease produced by Mucor miehei, C. R. Trav. Lab. Carlsberg 37: 301 (1970).Google Scholar
  3. 3.
    Y. Kawaguchi, N. Shimizu, K. Nishimori, T. Uozumi, and T. Beppu, Renaturation and activation of calf prochymosin produced in an insoluble form in Escherichia coli, J. Biotechnol. 1: 307 (1984).CrossRefGoogle Scholar
  4. 4.
    Y. Kawaguchi, S. Kosugi, K. Sasaki, T. Uozumi, and T. Beppu, Production of chymosin in Escherichia coli cells and its enzymatic properties, Agric. Biol. Chem. 51: 1871 (1987).CrossRefGoogle Scholar
  5. 5.
    T. Yamashita, N. Tonouchi, T. Uozumi, and T. Beppu, Secretion of Mucor rennin, a fungal aspartic protease of Mucor pusillus, by recombinant yeast cells, Mol. Gen. Genet. 210: 462 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    R. Hiramatsu, J. Aikawa, S. Horinouchi, and T. Beppu, Secretion by yeast of the zymogen form of Mucor rennin, an aspartic proteinase of Mucor pusillus, and its conversion to the mature form, J. Biol. Chem. 264: 16862 (1989).PubMedGoogle Scholar
  7. 7.
    J. Suzuki, K. Sasaki, Y. Sasao, A. Hamu, H. Kawasaki, M. Nishiyama, S. Horinouchi, and T. Beppu, Alteration of catalytic properties of chymosin by site-directed mutagenesis, Prot. Eng. 2: 563 (1989).CrossRefGoogle Scholar
  8. 8.
    J. Suzuki, A. Hamu, N. Nishiyama, S. Horinouchi, and T. Beppu, Functional contribution of Thr218, Lys220 and Asp304 in chymosin analyzed by site-directed mutagenesis, Prot. Eng. 4: 69 (1990).CrossRefGoogle Scholar
  9. 9.
    T. A. Kunkel, Rapid and efficient site-specific mutagenesis without phenotype selection, Proc. Natl. Acad. Sci. U.S.A. 82: 488 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    F. Sanger, A. R. Coulson, B. G. Barrelle, A. J. M. Smith, and B. A. Ros, Bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol. 143: 161 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    A. L. Tarentino, T. H. Jr. Plummer, and F. Maley, The release of intact oligosaccharide from specific glycoprotein by endo-ß-N-acetylglucosaminidase H, J. Biol. Chem. 249: 818 (1974).PubMedGoogle Scholar
  12. 12.
    S. Iwasaki, G. Tamura, and K. Arima, Milk clotting enzyme from microorgamisms. Part II. The enzyme production and the properties of crude enzyme, Agric. Biol. Chem. 31: 546 (1967).CrossRefGoogle Scholar
  13. 13.
    M. I. Anson, The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin, J. Gen. Physiol. 22: 79 (1938).PubMedCrossRefGoogle Scholar
  14. 14.
    N. Tonouchi, H. Shoun, T. Uozumi, and T. Beppu, Cloning and sequencing of a gene for Mucor rennin, an aspartic protease from Mucor pusillus, Nucleic Acids Res. 14: 7557 (1986).PubMedCrossRefGoogle Scholar
  15. 15.
    Y. Etoh, H. Shoun, T. Beppu, and K. Arima, Physiochemical and immunochemical studies on similarities of acid proteases Mucor pusillus rennin and Mucor miehei rennin,” Agric. Biol. Chem. 43: 209 (1979).CrossRefGoogle Scholar
  16. 16.
    J. Aikawa, T. Yamashita, M. Nishiyama, S. Horinouchi, and T. Beppu, Effects of glycosylation on the secretion and enzyme activity of Mucor rennin, an aspartic proteinase of Mucor pusillus, produced by recombinant yeast, J. Biol. Chem. 265: 13955 (1990).PubMedGoogle Scholar
  17. 17.
    D. R. Davies, The structure and function of the aspartic proteinases, Annu. Rev. Biophys. Biophys. Chem. 19: 189 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    T. L. Blundell, J. Cooper, S. I. Foundling, D. M. Jones, B. Attrash, and M. Szelke, On the rational design of renin inhibitors: X-ray Studies of aspartic proteinases complexed with transition-state analogues, Biochemistry 26: 5585 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    J. Cooper, S. Foundling, A. Hemmings, T. Blundell, D. M. Jones, A. Hallett, and M. Szelke, The structure of a synthetic pepsin inhibitor complexed with endothiapepsin, Eur. J. Biochem. 169: 215 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Sali, B. Veerapandian, J. B. Cooper, S. I. Foundling, D. J. Hoover, and T. L. Blundell, High-resolution X-ray diffraction study of the complex between endothiapepsin and an oligopeptide inhibitor: the analysis of the inhibitor binding and description of the rigid body shift in the enzyme, EMBO J. 8: 2179 (1989).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jun-ichi Aikawa
    • 1
  • Ryuji Hiramatsu
    • 1
  • Makoto Nishiyama
    • 1
  • Sueharu Horinouchi
    • 1
  • Teruhiko Beppu
    • 1
  1. 1.Department of Agricultural ChemistryThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations