Skip to main content

Time-Dependent Decrease in Ca2+-Sensitivity in “Phasic Smooth Muscle”

  • Chapter
Regulation of Smooth Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 304))

Abstract

Recent studies using the Ca2+-indicators, aequorin and fura-2, support the concept that increased intracellular Ca2+ ([Ca2+ ]i) leads to force development in smooth muscle (for reviews, see Karaki, 1989; Somlyo and Himpens, 1989). For example, in guinea-pig taenia caecum a close correlation exists between [Ca2+]i and muscle tension (Ozaki et al., 1988; Mitsui and Karaki, 1990). However, in some smooth muscles, the relationship between [Ca2+]i and force development appears to depend upon the method of stimulation. For a given increase in [Ca2+]i, agonists such as norepinephrine, histamine, prostaglandins, and endothelin in vascular smooth muscle (Morgan and Morgan, 1984; DeFeo and Morgan, 1985; Sato et al., 1988; Sakata et al., 1989; Mori et al., 1990; Ozaki et al., 1990a), and carbachol in trachea (Gerthoffer et al., 1990; Ozaki et al., 1990b) induce greater contractions than simple depolarization with elevated external K+. These findings suggest that the Ca2+-sensitivity of the contractile elements may be increased by certain agonists. Although the mechanism of Ca2+-sensitization has not been clarified, the agonist-induced activation of protein kinase C and subsequent phosphorylation of specific protein(s) may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • DeFeo, T. T. and Morgan, K. G., 1985, Calcium-force relationship as detected by aequorin in two different vascular smooth muscle of the ferret, J. Physiol., 369: 269.

    Google Scholar 

  • Gerthoffer, W. T., Murphey, K. A., and Gunst, S. J., 1989, Aequorin luminescence, myosin phosphorylation, and active stress in tracheal smooth muscle, Am. J. Physiol., 257: C1062.

    Google Scholar 

  • Golenhofen, K., 1976, Theory of P and T systems for calcium activation in smooth muscle, in: “Physiology of Smooth Muscle”, E. Bülbring and M. F. Shuba, eds., Raven Press, New York, p. 197.

    Google Scholar 

  • Golenhofen, K., 1981, Differentiation of calcium activation processes in smooth muscle using selective antagonists, in: “Smooth Muscle: An Assessment of Current Knowledge”, E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, eds., University of Texas Press, Austin, p. 157.

    Google Scholar 

  • Hartshorne D. J., 1987, Biochemistry of the contractile process in smooth muscle, in: “Physiology of Gastrointestinal Tract”, L. R. Johnson, ed., Raven Press, New York, p. 423.

    Google Scholar 

  • Himpens, B., Matthjis, G., and Somlyo, A. P., 1989, Desensitization to cytosolic Ca2+ and Ca2+ sensitivity in guinea-pig ileum and rabbit pulmonary artery, J. Physiol., 413: 489.

    PubMed  CAS  Google Scholar 

  • Himpens, B. and Casteels, R., 1990, Different effects of depolarization and muscarinic stimulation on the Ca2+/force relationship during the contraction-relaxation cycle in the guinea-pig ileum, Pflügers Arch., 416: 28.

    Article  PubMed  CAS  Google Scholar 

  • Ingebritsen, T. S. and Cohen, P., 1983, The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities, Eur. J. Biochem., 132: 255.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, H., Martin, B. L., Brautigan, D. L., Karaki, H., Ozaki, H., Kato, Y., Fusetani, N., Watabe, S., Hashimoto, K., Uemura, D., and Hartshorne, D. J., 1989, Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity, Biochem. Biophys. Res. Commun., 159: 871.

    Article  PubMed  CAS  Google Scholar 

  • Kamm, K. E. and Stull, J. T., 1985, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Ann. Rev. Pharmacol. Toxicol., 25: 593.

    Article  CAS  Google Scholar 

  • Karaki, H., 1989, Ca2+ localization and sensitivity in vascular smooth muscle, Trends Pharmacol. Sci., 10: 320.

    Article  PubMed  CAS  Google Scholar 

  • Mitsui, M. and Karaki, H., 1990, Dual effects of carbachol on cytosolic Ca2+ and contraction in the intestinal smooth muscle, Am. J. Physiol., 258: C787.

    PubMed  CAS  Google Scholar 

  • Morgan, J. P. and Morgan, K. G., 1984, Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein,J. Physiol., 351: 312.

    Google Scholar 

  • Morgan, K. G. and Szurszewski, J. H., 1980, Mechanism of phasic and tonic actions of pentagastrin on canine gastric smooth muscle, J. Physiol., 301: 229.

    PubMed  CAS  Google Scholar 

  • Mori, T., Yanagisawa, T., and Taira, N., 1990, Histamine increases vascular tone and intracellular calcium level using both intracellular and extracellular calcium in porcine coronary arteries, Jpn. J. Pharmacol., 52: 263.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki, H., Satoh, T., Karaki, H., and Ishida, Y., 1988, Regulation of metabolism and contraction by cytoplasmic calcium in the intestinal smooth muscle, J. Biol. Chem., 263: 14074.

    PubMed  CAS  Google Scholar 

  • Ozaki, H., Ohyama, T., Sato, K., and Karaki, H., 1990a, Ca2+ dependent and independent mechanism of sustained contraction in vascular smooth muscle of rat aorta, Jpn. J. Pharmacol., 52: 509.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki, H., Kwon, S.-C, Tajimi, M., and Karaki, H., 1990b, Changes in cytosolic Ca2+ and contraction induced by various stimulants and relaxants in canine tracheal smooth muscle, Pflügers Arch., 416: 351.

    Article  PubMed  CAS  Google Scholar 

  • Ozaki, H., Stevens, R. J., Blondfield, D. P., Publicover, N. G., and Sanders, K. M., 1991, Simultaneous measurement of membrane potential, cytosolic Ca2+ and tension in intact smooth muscle, Am. J. Physiol., 260: C917.

    PubMed  CAS  Google Scholar 

  • Rembold, C. M., 1989, Desensitization of swine arterial smooth muscle to transplasmalemmal Ca2+ influx, J. Physiol., 416: 273.

    PubMed  CAS  Google Scholar 

  • Sakata, K., Ozaki, H., Kwon, S.-C, and Karaki, H., 1989, Effects of endothelin on the mechanical activity and cytosolic calcium levels of various types of smooth muscle, Br. J. Pharmacol., 98: 483.

    PubMed  CAS  Google Scholar 

  • Sanders, K. M. and Publicover, N. G., 1989, Electrophysiology of the gastric musculature, in: “Handbook of Physiology, The Gastrointestinal System,” Vol I., S. G. Schultz and J. D. Wood., eds., The American Physiological Society, Bethesda, p. 187.

    Google Scholar 

  • Sato, K., Ozaki, H., and Karaki, H., 1988, Changes in cytosolic calcium level in vascular smooth muscle strip measured simultaneously with contraction using fluorescent calcium indicator fura-2, J. Pharmacol. Exp. Ther., 246: 294.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. P. and Himpens, B., 1989, Cell calcium and its regulation in smooth muscle, FASEB J., 3: 2266.

    PubMed  CAS  Google Scholar 

  • Somlyo, A. P. and Somlyo, A. V., 1990, Flash photolysis studies of excitation-contraction coupling, regulation and contraction in smooth muscle, Ann. Rev. Physiol., 52: 857.

    Article  CAS  Google Scholar 

  • Stewart, A. A., Ingebritsen, T. S., and Cohen, P., 1983, The protein phosphatases involved in cellular regulation. 5. Purification of and properties of a Ca2+-and calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle, Eur. J. Biochem., 132: 289.

    Article  PubMed  CAS  Google Scholar 

  • Szurszewski, J. H., 1987, Electrical basis for gastrointestinal motility, in: “Physiology of Gastrointestinal Tract”, L. R., Johnson, ed., Raven Press, New York, p. 383.

    Google Scholar 

  • Vogalis, F., Publicover, N. G., Hume, J., and Sanders, K. M., 1991, Relationship between calcium current and cytosolic calcium concentration in canine gastric smooth muscle cells, Am. J. Physiol., 260: C1012.

    PubMed  CAS  Google Scholar 

  • Yagi, S., Becker P. L., and Fay, F. S., 1988, Relationship between force and Ca2+ concentration in smooth muscle as revealed by measurement on single cells, Proc. Natl. Acad. Sci. U.S.A., 85: 4109.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ozaki, H., Gerthoffer, W.T., Publicover, N.G., Sanders, K.M. (1991). Time-Dependent Decrease in Ca2+-Sensitivity in “Phasic Smooth Muscle”. In: Moreland, R.S. (eds) Regulation of Smooth Muscle Contraction. Advances in Experimental Medicine and Biology, vol 304. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6003-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6003-2_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6005-6

  • Online ISBN: 978-1-4684-6003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics