Norepinephrine Stimulates Inositol Trisphosphate Formation in Rat Pulmonary Arteries

  • Najia Jin
  • C. Subah Packer
  • Denis English
  • Rodney A. Rhoades
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


Although the discovery of the “phosphoinositide effect” occurred over 35 years ago, its mechanisms were explored only over the last decade. It now is clear that hydrolysis of phosphoinositides generates second messengers for multiple cellular functions when receptors are activated by a wide array of hormones and agonists in a variety of cell types (for review see Rana and Hokin, 1990). Early studies focused on the role of phosphoinositides on regulation of secretion or control of release of secretory cell contents (Hokin and Hokin, 1953, 1960; Freinkel, 1957; Hokin et al., 1958, 1963; Axen et al., 1983). In recent years, studies of the physiological effects of phosphoinositide hydrolysis have extended to such cell types and tissues as cerebral cortical slices (Kendall and Nahorski, 1984), sympathetic ganglia (Bone et al., 1984), adrenal glomerulosa cells (Kojima et al., 1986), rod outer segments (Brown et al., 1987), epithelium (Anderson and Welsh, 1990), leukocytes (Bradford and Rubin, 1986), skeletal muscle (Volpe et al., 1985), and smooth muscle (Akhtar and Abdel-Latif, 1980; Bielkiewicz-vollrath et al., 1987).


High Performance Liquid Chromatography Inositol Phosphate Inositol Trisphosphate Porcine Coronary Artery Inositol Monophosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev., 38: 227.PubMedGoogle Scholar
  2. Akhtar, R. A. and Abdel-Latif, A. A., 1980, Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle, Biochem. J., 142: 599.Google Scholar
  3. Anderson, M. P. and Welsh, M. J., 1990, Isoproterenol, cAMP and bradykinin stimulate diacylglycerol production in airway epithelium, Am. J. Physiol., 258: L294.Google Scholar
  4. Axen, K. V., Schubert, U. K., Blake, A. D., and Fleischer, N., 1983, Role of Ca2+ in secretagogue-stimulated breakdown of phosphatidylinositol in rat pancreatic islets, J. Clin. Invest., 72: 13.PubMedCrossRefGoogle Scholar
  5. Bielkiewicz-vollrath, B., Carpenter, J. R., Schulz, R., and Cook, D. A., 1987, Early production of 1,4,5-inositol trisphosphate and 1,3,4,5-inositol tetrakisphosphate by histamine and carbachol in ileal smooth muscle, Mol. Pharmacol., 31: 513.PubMedGoogle Scholar
  6. Bone, E. A., Fretten, P., Palmer, S., Kirk, C. J., and Mitchell, R. H., 1984, Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to Vi-vasopressin and muscarinic cholinergic stimuli, Biochem. J., 221: 803.PubMedGoogle Scholar
  7. Bradford, P. G. and Rubin, R. P., 1986, Quantitative changes in inositol 1,4,5-trisphosphate in chemoattractant-stimulated neutrophils, J. Biol. Chem., 261: 15644.PubMedGoogle Scholar
  8. Brown, J. E., Blazynski, C., and Cohen, A. I., 1987, Light induces a rapid and transient increase in inositol-trisphophate in toad rod outer segments, Biochem. Biophys. Res. Commun., 146: 1392.PubMedCrossRefGoogle Scholar
  9. Duncan, R. A., Krzanowski Jr., J. J., Davis, J. S., Poison, J. B., Coffey, R. G., Shimoda, T., and Szentivanyi, A., 1987, Polyphosphoinositide metabolism in canine tracheal smooth muscle (CTSM) in response to a cholinergic stimulus, Biochem. Pharmacol., 36: 307PubMedCrossRefGoogle Scholar
  10. Freinkel, N., 1957, Pathways of thyroidal phosphate metabolism: The effect of pituitary thyrotropin upon the phospholipids of the sheep thyroid gland. Endocrinology, 61: 448.PubMedCrossRefGoogle Scholar
  11. Hokin, L. E. and Hokin, M. R., 1960, Studies on the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in avian salt gland on stimulation of secretion, J. Gen. Physiol., 44: 61.PubMedCrossRefGoogle Scholar
  12. Hokin, L. E., Hokin, M. R., and Lobeck, C. C., 1963, Effects of acetylcholine on the incorporation of 32P into the phospholipids in slices of skin from children with and without cystic fibrosis of the pancreas, J. Clin. Invest., 42: 1232.PubMedCrossRefGoogle Scholar
  13. Hokin, M. R. and Hokin, L. E., 1953, Enzyme secretion and the incorporation of 32P into the phospholipids of pancreas slices, J. Biol. Chem., 203: 967.PubMedGoogle Scholar
  14. Hokin, M. R., Hokin, L. E., Saffran, M., Schally, A. V., and Zimmermann, B. U., 1958, Phospholipid and the secretion of adrenocorticotropin and of corticosteriods, J. Biol. Chem., 233: 811.PubMedGoogle Scholar
  15. Iino, M., 1990, Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci, J. Gen. Physiol., 95: 1103.PubMedCrossRefGoogle Scholar
  16. Kendall, D. A. and Nahorski, S. R., 1984, Inositol phospholipid hydrolysis in rat cerebral cortical slices. II. Calcium requirement., J. Neurochem., 42: 1388.PubMedCrossRefGoogle Scholar
  17. Kojima, I., Shibata, H., and Ogata, E., 1986, Pertussis toxin blocks angiotensin II-induced calcium influx but not inositol trisphosphate production in adrenal glomerulosa cells, FEBS Lett., 204: 347.PubMedCrossRefGoogle Scholar
  18. Lee, T. S., Chao, T., Hu, K. Q., and King, G. L., 1989, Endothelin stimulates a sustained 1,2-diacylglycerol increase and protein kinase C activation in bovine aortic smooth muscle cells, Biochem. Biophys. Res. Commun., 162: 381.PubMedCrossRefGoogle Scholar
  19. Rana, R. S. and Hokin, L. E., 1990, Role of phosphoinositides in transmembrane signaling, Physiol. Rev., 70: 115.PubMedGoogle Scholar
  20. Suematsu, E., Harita, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Commun., 120: 481.PubMedCrossRefGoogle Scholar
  21. Taylor, G. S., Carcia, J. G. N., Dukes, R., and English, D., 1990, High-performance liquid chromatographic analysis of radiolabeled inositol phosphates, Anal. Biochem., 188: 118.PubMedCrossRefGoogle Scholar
  22. Volpe, P., Salviati, G., Divigilio, F., and Pozzan, T., 1985 Inositol 1,4,5-trisphophate induced calcium release from the sarcoplasmic reticulum of skeletal muscle, Nature, 316: 347.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Najia Jin
    • 1
  • C. Subah Packer
    • 1
  • Denis English
    • 1
  • Rodney A. Rhoades
    • 1
  1. 1.Departments of Physiology/Biophysics and Medicine/PathologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations