Skip to main content

Norepinephrine Stimulates Inositol Trisphosphate Formation in Rat Pulmonary Arteries

  • Chapter
Regulation of Smooth Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 304))

  • 143 Accesses

Abstract

Although the discovery of the “phosphoinositide effect” occurred over 35 years ago, its mechanisms were explored only over the last decade. It now is clear that hydrolysis of phosphoinositides generates second messengers for multiple cellular functions when receptors are activated by a wide array of hormones and agonists in a variety of cell types (for review see Rana and Hokin, 1990). Early studies focused on the role of phosphoinositides on regulation of secretion or control of release of secretory cell contents (Hokin and Hokin, 1953, 1960; Freinkel, 1957; Hokin et al., 1958, 1963; Axen et al., 1983). In recent years, studies of the physiological effects of phosphoinositide hydrolysis have extended to such cell types and tissues as cerebral cortical slices (Kendall and Nahorski, 1984), sympathetic ganglia (Bone et al., 1984), adrenal glomerulosa cells (Kojima et al., 1986), rod outer segments (Brown et al., 1987), epithelium (Anderson and Welsh, 1990), leukocytes (Bradford and Rubin, 1986), skeletal muscle (Volpe et al., 1985), and smooth muscle (Akhtar and Abdel-Latif, 1980; Bielkiewicz-vollrath et al., 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev., 38: 227.

    PubMed  CAS  Google Scholar 

  • Akhtar, R. A. and Abdel-Latif, A. A., 1980, Requirement for calcium ions in acetylcholine-stimulated phosphodiesteratic cleavage of phosphatidyl-myo-inositol 4,5-bisphosphate in rabbit iris smooth muscle, Biochem. J., 142: 599.

    Google Scholar 

  • Anderson, M. P. and Welsh, M. J., 1990, Isoproterenol, cAMP and bradykinin stimulate diacylglycerol production in airway epithelium, Am. J. Physiol., 258: L294.

    Google Scholar 

  • Axen, K. V., Schubert, U. K., Blake, A. D., and Fleischer, N., 1983, Role of Ca2+ in secretagogue-stimulated breakdown of phosphatidylinositol in rat pancreatic islets, J. Clin. Invest., 72: 13.

    Article  PubMed  CAS  Google Scholar 

  • Bielkiewicz-vollrath, B., Carpenter, J. R., Schulz, R., and Cook, D. A., 1987, Early production of 1,4,5-inositol trisphosphate and 1,3,4,5-inositol tetrakisphosphate by histamine and carbachol in ileal smooth muscle, Mol. Pharmacol., 31: 513.

    PubMed  CAS  Google Scholar 

  • Bone, E. A., Fretten, P., Palmer, S., Kirk, C. J., and Mitchell, R. H., 1984, Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to Vi-vasopressin and muscarinic cholinergic stimuli, Biochem. J., 221: 803.

    PubMed  CAS  Google Scholar 

  • Bradford, P. G. and Rubin, R. P., 1986, Quantitative changes in inositol 1,4,5-trisphosphate in chemoattractant-stimulated neutrophils, J. Biol. Chem., 261: 15644.

    PubMed  CAS  Google Scholar 

  • Brown, J. E., Blazynski, C., and Cohen, A. I., 1987, Light induces a rapid and transient increase in inositol-trisphophate in toad rod outer segments, Biochem. Biophys. Res. Commun., 146: 1392.

    Article  PubMed  CAS  Google Scholar 

  • Duncan, R. A., Krzanowski Jr., J. J., Davis, J. S., Poison, J. B., Coffey, R. G., Shimoda, T., and Szentivanyi, A., 1987, Polyphosphoinositide metabolism in canine tracheal smooth muscle (CTSM) in response to a cholinergic stimulus, Biochem. Pharmacol., 36: 307

    Article  PubMed  CAS  Google Scholar 

  • Freinkel, N., 1957, Pathways of thyroidal phosphate metabolism: The effect of pituitary thyrotropin upon the phospholipids of the sheep thyroid gland. Endocrinology, 61: 448.

    Article  PubMed  CAS  Google Scholar 

  • Hokin, L. E. and Hokin, M. R., 1960, Studies on the carrier function of phosphatidic acid in sodium transport. I. The turnover of phosphatidic acid and phosphoinositide in avian salt gland on stimulation of secretion, J. Gen. Physiol., 44: 61.

    Article  PubMed  CAS  Google Scholar 

  • Hokin, L. E., Hokin, M. R., and Lobeck, C. C., 1963, Effects of acetylcholine on the incorporation of 32P into the phospholipids in slices of skin from children with and without cystic fibrosis of the pancreas, J. Clin. Invest., 42: 1232.

    Article  PubMed  CAS  Google Scholar 

  • Hokin, M. R. and Hokin, L. E., 1953, Enzyme secretion and the incorporation of 32P into the phospholipids of pancreas slices, J. Biol. Chem., 203: 967.

    PubMed  CAS  Google Scholar 

  • Hokin, M. R., Hokin, L. E., Saffran, M., Schally, A. V., and Zimmermann, B. U., 1958, Phospholipid and the secretion of adrenocorticotropin and of corticosteriods, J. Biol. Chem., 233: 811.

    PubMed  CAS  Google Scholar 

  • Iino, M., 1990, Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci, J. Gen. Physiol., 95: 1103.

    Article  PubMed  CAS  Google Scholar 

  • Kendall, D. A. and Nahorski, S. R., 1984, Inositol phospholipid hydrolysis in rat cerebral cortical slices. II. Calcium requirement., J. Neurochem., 42: 1388.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, I., Shibata, H., and Ogata, E., 1986, Pertussis toxin blocks angiotensin II-induced calcium influx but not inositol trisphosphate production in adrenal glomerulosa cells, FEBS Lett., 204: 347.

    Article  PubMed  CAS  Google Scholar 

  • Lee, T. S., Chao, T., Hu, K. Q., and King, G. L., 1989, Endothelin stimulates a sustained 1,2-diacylglycerol increase and protein kinase C activation in bovine aortic smooth muscle cells, Biochem. Biophys. Res. Commun., 162: 381.

    Article  PubMed  CAS  Google Scholar 

  • Rana, R. S. and Hokin, L. E., 1990, Role of phosphoinositides in transmembrane signaling, Physiol. Rev., 70: 115.

    PubMed  CAS  Google Scholar 

  • Suematsu, E., Harita, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Commun., 120: 481.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, G. S., Carcia, J. G. N., Dukes, R., and English, D., 1990, High-performance liquid chromatographic analysis of radiolabeled inositol phosphates, Anal. Biochem., 188: 118.

    Article  PubMed  CAS  Google Scholar 

  • Volpe, P., Salviati, G., Divigilio, F., and Pozzan, T., 1985 Inositol 1,4,5-trisphophate induced calcium release from the sarcoplasmic reticulum of skeletal muscle, Nature, 316: 347.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Jin, N., Packer, C.S., English, D., Rhoades, R.A. (1991). Norepinephrine Stimulates Inositol Trisphosphate Formation in Rat Pulmonary Arteries. In: Moreland, R.S. (eds) Regulation of Smooth Muscle Contraction. Advances in Experimental Medicine and Biology, vol 304. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6003-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6003-2_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6005-6

  • Online ISBN: 978-1-4684-6003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics