Skip to main content

Regulation of Smooth Muscle Actomyosin Function

  • Chapter
Regulation of Smooth Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 304))

Abstract

It is widely accepted that the smooth muscle contractile apparatus is primarily regulated by reversible phosphorylation and dephosphorylation of the 20 kDa light chain of myosin (Hartshorne, 1987). The enzyme which is responsible for the phosphorylation is the Ca2+/calmodulin dependent myosin light chain kinase (MLCK) and this is the key enzyme to confer Ca2+ sensitivity to the smooth muscle contractile apparatus (Hartshorne, 1987). Another critical component of the phosphorylation hypothesis is the dephosphorylation of the myosin light chain which is catalyzed by a protein phosphatase. Several protein phosphatases have been purified from the soluble fraction of smooth muscle cells. Pato and collaborators (Pato and Adelstein, 1983a, 1983b; Pato and Kerc, 1985) reported four protein phosphatases from gizzard smooth muscle soluble fraction and three of which (SMP I, II and IV) have been purified. Among them, SMP III and IV can dephosphorylate intact myosin. The purified SMP-IV has a molecular weight of 150 kDa and is composed of two subunits of MW 58 kDa and 40 kDa. SMP-IV preferentially dephosphory-lates the α-subunit of Phosphorylase kinase (a known substrate of Type 1 phosphatases) but is insensitive to Inhibitor-2 which is known to inhibit Type 1 phosphatases specifically. Phosphatases have also been purified from the soluble fraction of aortic smooth muscle (Werth et al., 1982; DiSalvo and Gifford 1983; Erdodi et al., 1989). Erdodi et al. (1989) recently purified two types of phosphatases from dog aortic smooth muscle which dephosphorylate native actomyosin. A 260 kDa phosphatase was similar in its properties to the Type 2A phosphatases. On the other hand, a 150 kDa phosphatase dephosphorylated the α-subunit of Phosphorylase kinase although it was not inhibited by Inhibitor 1 or Inhibitor 2, which are known to be specific inhibitors of Type 1 protein phosphatase. These reports suggest that smooth muscle phosphatases purified from the soluble fraction, which dephosphorylate myosin, may be different from both Type 1 and Type 2 phosphatases. However, it is still obscure whether or not these phosphatases are responsible for the regulation of contraction in vivo. Furthermore, it is not known if phosphatase activity is physiologically regulated, and this is one of the most important areas to be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bengur, A. R., Robinson, E. A., Apella, E., and Sellers, J. R., 1987, Sequence of the sites phosphorylated by protein kinase C in the smooth muscle light chains, J. Biol. Chem., 262: 7613.

    PubMed  CAS  Google Scholar 

  • Cohen, P. and Cohen, P. T. W., 1989, Protein phosphatases come of age, J. Biol. Chem., 264: 21435.

    PubMed  CAS  Google Scholar 

  • Cooke, R. and Stull, J. T., 1981, Myosin phosphorylation: A biochemical mechanism for regulating contractility, in: “Cell and Muscle Motility, Vol. 1”, J. W. Shay, and R. M. Dowben, eds., Plenum Press, New York, p. 99.

    Google Scholar 

  • Craig, R., Smith, R., and Kendrick-Jones, J., 1983, Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules, Nature, 302: 436.

    Article  PubMed  CAS  Google Scholar 

  • DiSalvo, J. and Gifford, D., 1983, Spontaneously active and ATPMg-dependent protein phosphatase activity in vascular smooth muscle, Biochem. Biophys. Res. Commun., 111: 912.

    Article  CAS  Google Scholar 

  • Erdodi, F., Rokolya, A., Bárány, M., and Bárány, K., 1989, Dephosphorylation of distinct sites in myosin light chain by two types of phosphatase in aortic smooth muscle, Biochim. Biophys. Acta, 1011: 67.

    Article  PubMed  CAS  Google Scholar 

  • Haeberle, J. R., Sutton, T. A., and Trockman, B. A., 1988, Phosphorylation of two sites on smooth muscle myosin, effects on contraction of glycerinated vascular smooth muscle, J. Biol. Chem., 263: 4424.

    PubMed  CAS  Google Scholar 

  • Hartshorne, D. J.. 1987, Biochemistry of the contractile process in smooth muscle, in: “Physiology of the Gastrointestinal Tract”, L. R. Johnson, ed., Raven Press, New York, p. 423.

    Google Scholar 

  • Hartshorne, D. J. and Ikebe, M., 1987, Phosphorylation of myosin, in: “Platelet Activation”, H. Yamazaki, and J. F. Mustard, eds., Academic Press, Tokyo, p. 3.

    Google Scholar 

  • Higashihara, M., Young-Frado, L.-L., and Craig, R., 1989, Inhibition of conformational change in smooth muscle myosin by a monoclonal antibody against the 17-kDa light chain, J. Biol Chem., 264: 5218.

    Google Scholar 

  • Higashihara, M. and Ikebe, M., 1990, Alteration of the enzymatic properties of smooth muscle myosin by a monoclonal antibody against subfragment 2, FEB S Lett., 263: 241.

    Article  CAS  Google Scholar 

  • Ikebe, M. and Hartshorne, D. J., 1984, Conformation-dependent proteolysis of smooth muscle, J. Biol Chem., 259: 11639.

    PubMed  CAS  Google Scholar 

  • Ikebe, M. and Hartshorne, D. J., 1985a, Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase, J. Biol. Chem., 260: 10027.

    PubMed  CAS  Google Scholar 

  • Ikebe, M. and Hartshorne, D. J., 1985b, Effects of Ca2+ on the conformation and enzymatic activity of smooth muscle myosin, J. Biol Chem., 260: 13146.

    PubMed  CAS  Google Scholar 

  • Ikebe, M. and Hartshorne, D. J., 1985c, Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: Preparation of heavy meromyosin and subfragment 1 with intact 20,000-dalton light chains, Biochemistry, 24: 2380.

    Article  PubMed  CAS  Google Scholar 

  • Ikebe, M. and Hartshorne, D. J., 1986, Proteolysis and actin-binding properties of 10S and 6S smooth muscle myosin: Identification of a site protected from proteolysis in the 10S conformation, Biochemistry, 25: 6177.

    Article  PubMed  CAS  Google Scholar 

  • Ikebe, M. and Takashi, R., 1990, Change in the flexibility of the head-rod junction of smooth muscle myosin by phosphorylation, Biophys. J., 57: 331a.

    Google Scholar 

  • Ikebe, M., Hinkins, S., and Hartshorne, D. J., 1983, Correlation of enzymatic properties and conformation of smooth muscle myosin, Biochemistry, 22: 4580.

    Article  PubMed  CAS  Google Scholar 

  • Ikebe, M., Hartshorne, D. J., and Elzinga, M., 1986, Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin, J. Biol Chem., 261: 36.

    PubMed  CAS  Google Scholar 

  • Ikebe, M., Hartshorne, D. J., and Elzinga, M, 1987, Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase, J. Biol Chem., 262: 9569.

    PubMed  CAS  Google Scholar 

  • Ishihara, H., Martin, B. L., Brautigan, D. L., Karaki, H., Ozaki, H., Kato, Y., Fusetani, N., Watabe, S., Hashimoto, K., Uemura, D., and Hartshorne, D. J., 1989, Calyculin A and okadaic acid: Inhibitors of protein phosphatase activity, Biochem. Biophys. Res. Commun., 159: 871.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Pierce, P. R., Allen, R. E., and Hartshorne, D. J., 1989, Effect of monoclonal antibodies on the properties of smooth muscle myosin, Biochemistry, 28: 5567.

    Article  PubMed  CAS  Google Scholar 

  • Jakes, R., Northrop, F., and Kendrick-Jones, J., 1976, Calcium binding regions of myosin ‘regulatory’ light chains, FEBS Lett., 70: 229.

    Article  PubMed  CAS  Google Scholar 

  • Morita, J., Takashi, R., and Ikebe, M., 1991, Exchange of the fluorescence labelled 20,000 dalton light chain of smooth muscle myosin, Biochemistry, in press.

    Google Scholar 

  • Nishikawa, M., Sellers, J. R., Adelstein, R. S., and Hidaka, H., 1984, Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase, J. Biol. Chem., 259: 8808.

    PubMed  CAS  Google Scholar 

  • Okamoto, Y., Sekine, T., Grammer, J., and Yount, R. G., 1986, The essential light chains constitute part of the active site of smooth muscle myosin, Nature, 324: 78.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H. and Wakabayashi, T., 1982, Electron microscopic studies of myosin molecules from chicken gizzard muscle I: The formation of the intramolecular loop in the myosin tail, J. Biochem., 92: 871.

    PubMed  CAS  Google Scholar 

  • Onishi, H. and Watanabe, S., 1984, Correlation between the papain digestibility and the conformation of 10S-myosin from chicken gizzard, J. Biochem., 95: 899.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Suzuki, H., Nakamura, K., Takahashi, K., and Watanabe, S., 1978, Adenosine triphosphatase activity and “thick filament” formation of chicken gizzard myosin in low salt media, J. Biochem., 83: 835.

    PubMed  CAS  Google Scholar 

  • Onishi, H., Wakabayashi, T., Kamata, T., and Watanabe, S., 1983, Electron microscopic studies of myosin molecules from chicken gizzard muscle. II: The effect of thiophosphorylation of the 20K-dalton light chain on the ATP-induced change in the conformation of myosin monomers, J. Biochem., 94: 1147.

    PubMed  CAS  Google Scholar 

  • Pato, M. D. and Adelstein, R. S., 1983a, Purification and characterization of a multisubunit phosphatase from turkey gizzard smooth muscle. The effect of calmodulin binding to myosin light chain, J. Biol. Chem., 258: 7047.

    PubMed  CAS  Google Scholar 

  • Pato, M. D. and Adelstein, R. S., 1983b, Characterization of a Mg2+-dependent phosphatase from turkey gizzard smooth muscle, J. Biol. Chem., 258: 7055.

    PubMed  CAS  Google Scholar 

  • Pato, M. D. and Kerc, E., 1985, Limited proteolytic digestion and dissociation of smooth muscle phosphatase-I modifies its substrate specificity. Preparation and properties of different forms of smooth muscle phosphatase-I, J. Biol. Chem., 260: 12359.

    PubMed  CAS  Google Scholar 

  • Schliselfeld, L. H., and Bárány, M., 1968, The binding of adenosine triphosphate to myosin, Biochemistry, 7: 3206.

    Article  PubMed  CAS  Google Scholar 

  • Sellers, J. R., Chantier, P. D., and Szent-Gyorgyi, A. G., 1980, Hybrid formation between scallop myofibrils and foreign regulatory light chains, J. Mol. Biol, 144: 223.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S., 1978, Structure and function of chicken gizzard myosin, J. Biochem., 84: 1529.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Kamata, T., Onishi, H., and Watanabe, S., 1982, Adenosine triphosphate-induced reversible change in the conformation of chicken gizzard myosin and heavy meromyosin, J. Biochem., 91: 1699.

    PubMed  CAS  Google Scholar 

  • Suzuki, H., Stafford III, W. F., Slayter, H. S., and Seidel, J. C., 1985, A conformational transition in gizzard heavy meromyosin involving the head-tail junction, resulting in changes in sedimentation coefficient, ATPase activity, and orientation of heads, J. Biol. Chem., 260: 14810.

    PubMed  CAS  Google Scholar 

  • Trybus, K. M., Huiatt, T. W., and Lowey, S., 1982, A bent monomeric conformation of myosin from smooth muscle, Proc. Nat’l. Acad. Sci. U.S.A., 79: 6151.

    Article  CAS  Google Scholar 

  • Trybus, K. M. and Lowey, S., 1988, The regulatory light chain is required for folding of smooth muscle myosin, J. Biol. Chem., 263: 16485.

    PubMed  CAS  Google Scholar 

  • Werth, D. K., Haeberle, J. R., and Hathaway, D. R., 1982, Purification of a myosin phosphatase from bovine aortic smooth muscle, J. Biol. Chem., 257: 7306.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ikebe, M., Mitsui, T., Maruta, S. (1991). Regulation of Smooth Muscle Actomyosin Function. In: Moreland, R.S. (eds) Regulation of Smooth Muscle Contraction. Advances in Experimental Medicine and Biology, vol 304. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6003-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6003-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6005-6

  • Online ISBN: 978-1-4684-6003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics