Skip to main content

Altered Excitation-Contraction Coupling in Hypertension: Role of Plasma Membrane Phospholipids and Ion Channels

  • Chapter
Regulation of Smooth Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 304))

Abstract

Established hypertension is characterized by an elevation of peripheral resistance (Frohlich, 1973). A variety of in vivo studies in human as well as animal models of hypertension have demonstrated augmented responsiveness of arterial smooth muscle to contractile agents (Triggle, 1989). However, identification of the cellular mechanisms responsible for this increased responsiveness has proven elusive. Most older in vitro studies of maximum contractile responses as well as of the sensitivity of isolated vascular smooth muscle to agonists failed to reveal augmented responses in hypertensive arteries (Cox, 1989; Mulvany, 1989; Triggle, 1989). Folkow proposed the hypothesis that increased arterial wall thickness which impinged on the lumen was responsible for an increased geometric component of peripheral resistance as well as the augmented in vivo smooth muscle responsiveness to agonists in hypertension (Folkow, 1973). The latter was thought to be the result of an amplifying effect of the increased wall thickness being translated into augmented resistance responses to smooth muscle activation (Folkow, 1973). This hypothesis was generally accepted as a reconciliation of the results reported up to the mid 1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bárány M, 1967, ATPase activity of myosin correlated with speed of muscle shortening, J. Gen. Physiol, 50: 197.

    Article  PubMed  Google Scholar 

  • Benga, G. and Holmes, R. P., 1984, Interactions between components in biological membranes and their implications for membrane function, Prog. Biophys. Mol. Biol, 43: 195.

    Article  PubMed  CAS  Google Scholar 

  • Bialecki R. and Tulenko T. N., 1989, Excess membrane cholesterol alters calcium channel activity in smooth muscle of rabbit carotid artery, Am. J. Physiol., 257:C306.

    Google Scholar 

  • Bing, R. F., Heagerty, P. M., Thurston, H., and Swales, J. D., 1986, Ion transport in hypertension: Are changes in the cell membrane responsible?, Clin. Sci., 71: 225.

    PubMed  CAS  Google Scholar 

  • Borochov, H., Zahler, P., Wilbrandt, W., and Shinitzky, M., 1977, Effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocytes membrane, Biochim. Biophys. Acta, 470: 382.

    Article  CAS  Google Scholar 

  • Broderick, R., Bialecki, R., and Tulenko, T. N., 1989, Cholesterol-induced changes in arterial sensitivity to adrenergic stimulation, Am. J. Physiol, 257: H170.

    Google Scholar 

  • Carey, R. A., Bove, A. A., Coulson, R. L., and Spann, J. F., 1979, Correlation between cardiac muscle myosin ATPase activity and velocity of shortening, Biochem. Med., 21: 235.

    Article  PubMed  CAS  Google Scholar 

  • Chacko, S. and Cox, R. H., 1981, Contractile protein content of arteries from normotensive (WKY) and spontaneously hypertensive rats (SHR), Fed. Proc, 40: 575.

    Google Scholar 

  • Cohen, M. L. and Berkowitz, B. A., 1976, Vascular contraction: Effect of age and extracellular calcium, Blood Vessels, 13: 139.

    PubMed  CAS  Google Scholar 

  • Cox, R. H., 1981, Basis for the altered arterial wall mechanics in the spontaneously hypertensive rat, Hypertension, 3: 485.

    PubMed  CAS  Google Scholar 

  • Cox, R. H., 1982a, Time course of arterial wall changes with DOCA plus salt hypertension in the rat, Hypertension, 4: 27.

    PubMed  CAS  Google Scholar 

  • Cox, R. H., 1982b, Changes in arterial wall properties during development and maintenance of renal hypertension, Am. J. Physiol., 242: H477.

    Google Scholar 

  • Cox, R. H., 1989, Mechanical properties of arteries in hypertension, in: “Blood Vessel Changes in Hypertension: Structure and Function Vol. 1”, R. M. K. W. Lee, ed., CRC Press, Boca Raton, p. 65.

    Google Scholar 

  • Cox, R. H., Katzka, D., and Morad, M., 1990, Characteristics of calcium current in single isolated rabbit portal vein myocytes, Biophys. J., 57: 526a.

    Google Scholar 

  • Cox, R. H., Katzka, D., and Morad, M., 1990, Characteristics of inactivation of calcium currents in freshly isolated rabbit portal vein myocytes, FASEB J., 4: A441.

    Google Scholar 

  • Cox, R. H. and Kikta, D. C., 1989, Comparison of norepinephrine (NE) activated 86Rb efflux in arteries from genetically obese Zucker rats, FASEB J., 3: A1009.

    Google Scholar 

  • Dukes, I. and Morad, M., 1990, Tedisamil inactivates transient outward K+ current in rat ventricular myocytes, Am. J. Physiol., 257: H1746.

    Google Scholar 

  • Erne, P. and Hermsmeyer, K., 1989, Intracellular vascular muscle Ca2+ modulation in genetic hypertension, Hypertension, 14: 145.

    PubMed  CAS  Google Scholar 

  • Fleisch, J. H., 1980, Age-related changes in the sensitivity of blood vessels to drugs, Pharmacol. Ther., 8: 477.

    Article  PubMed  CAS  Google Scholar 

  • Folkow, B., Hallback, M., Lundgren, Y., Sivertsson, R., and Weiss, L., 1973, Importance of adaptive changes in vascular design for establishment of primary hypertension, studied in man and in spontaneously hypertensive rats, Circ. Res., 32(Suppl I): 2.

    PubMed  Google Scholar 

  • Frohlich, E. D., 1973, Clinical significance of hemodynamic findings in hypertension, Chest, 64: 94.

    Article  PubMed  CAS  Google Scholar 

  • Gleason, M. M. and Tulenko, T., 1989, Excess cholesterol alters calcium fluxes and membrane fluidity in cultured arterial smooth muscle cells, Circulation, 80: 11–63.

    Google Scholar 

  • Graham, R. M., Pettinger, W. A., Sagalowsky, A., Brabson, J., and Gandler, T., 1982, Renal alpha-adrenergic receptor abnormality in the spontaneously hypertensive rat, Hypertension, 4: 881.

    PubMed  CAS  Google Scholar 

  • Hauser, H. and Phillips, M. C., 1979, Interactions of the polar head groups of phospholipid bilayer membranes, in: “Progress in Surface Membrane Science”, D. A. Cadenheaad and J. F. Danielli, eds., Academic Press, New York, p. 297.

    Google Scholar 

  • Henry, P. D., 1984, Hyperlipidemic arterial dysfunction, Circulation, 81: 697.

    Article  Google Scholar 

  • Hermsmeyer, K., 1984, Altered arterial muscle ion transport mechanism in the spontaneously hypertensive rat, J. Cardiovasc. Pharmacol., 6: S10.

    Article  PubMed  Google Scholar 

  • Hruza, Z. and Zweifach, B. W., 1967, Effect of age on vascular reactivity to catecholamines in rats, J. Gerontology, 22: 469.

    CAS  Google Scholar 

  • Ives, H. E., 1989, Ion transport defects in hypertension. Where is the link?, Hypertension, 14: 590.

    PubMed  CAS  Google Scholar 

  • Johansson, B., 1984, Different types of smooth muscle hypertrophy, Hypertension, 6(Suppl III): 11–64.

    Google Scholar 

  • Jones, A. W., 1973, Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats. Influences of aldosterone, norepinephrine and angiotensin, Circ. Res., 33: 563.

    PubMed  CAS  Google Scholar 

  • Jones, A. W., 1980, Content and fluxes of electrolytes, in: “The Handbook of Physiology; The Cardiovascular System: Vascular Smooth Muscle”, D. F. Bohr, A. P. Somlyo, and H. V. Sparks Jr., eds., American Physiological Society, Bethesda, p. 253.

    Google Scholar 

  • Jones, A. W. and Smith, J. M., 1986, Altered Ca-dependent fluxes of 42K in rat aorta during aldosterone-salt hypertension, in: “Recent Advances in Arterial Disease: Atherosclerosis, Hypertension and Vasospasm”, T. N. Tulenko and R. H. Cox, eds., Alan R. Liss, New York, p. 265.

    Google Scholar 

  • Kass, R. S. and Krafte, D. S., 1987, Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines, J. Gen. Physiol, 89: 629.

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. S., Samuel, M., Levin, R. M., and Chacko, S., 1990, Characteristics of the contractile and cytoskeletal proteins of the hypertrophied urinary bladder smooth muscle, J. Urology, 143: 35A.

    Google Scholar 

  • Locher, O. H., Neyes, L., Stimple, M., Kuffer, B., and Vetter, W., 1984, The cholesterol content of the human erythrocyte influences calcium influx through the channel, Biochem. Biophys. Res. Comm., 124: 822.

    Article  PubMed  CAS  Google Scholar 

  • Madden, T. D., King, M. D., and Quinn, P. J., 1981, The modulation of Ca++-ATPase activity of sarcoplasmic reticulum by membrane cholesterol — the effect of enzyme coupling, Biochim. Biophys. Acta, 641: 265.

    Article  PubMed  CAS  Google Scholar 

  • Matlib, M. A., Schwartz, A., and Yamori, Y., 1985, A Na+-Ca2+ exchange process in isolated sarcolemmal membranes of mesenteric arteries of WKY and SHR, Am. J. Physiol., 249: C166.

    PubMed  CAS  Google Scholar 

  • McMahon, E. G. and Paul, R. J., 1985, Calcium sensitivity of isometric force in intact and chemically skinned aortas during the development of aldosterone-salt hypertension in the rat, Circ. Res., 56: 427.

    PubMed  CAS  Google Scholar 

  • Medow, M. S. and Segal, S., 1987, Age-related changes in fluidity of rat renal brush border membrane vesicles, Biochem. Biophys. Res. Comm., 142: 849.

    Article  PubMed  CAS  Google Scholar 

  • Mulvany, M. J. and Nyborg, N., 1980, An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats, Br. J. Pharmacol., 71: 585.

    PubMed  CAS  Google Scholar 

  • Mulvany, M. J., 1989, Contractile properties of resistance vessels related to cellular function, in: “Blood Vessel Changes in Hypertension: Structure and Function, Vol. 1”, R. M. K. W. Lee, ed., CRC Press, Boca Raton, p. 1.

    Google Scholar 

  • Mulvany, M. J. and Halpern, W., 1977, Contractile properties of small resistance vessels in spontaneously hypertensive and normotensive rats, Circ. Res., 41: 19.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1984, Turnover of inositol phospholipids and signal transduction, Science, 225: 1365.

    Article  PubMed  CAS  Google Scholar 

  • Owens, G. K., 1991, Role of contractile agonists in growth regulation of vascular smooth muscle cells, in: “Cellular and Molecular Mechanisms in Hypertension”, R. H. Cox, ed., Plenum Press, New York, in press.

    Google Scholar 

  • Packer, C. S. and Stephens, N. L., 1985, Force-velocity relationships in hypertensive arterial smooth muscle, Can. J. Physiol. Pharmacol., 63: 669.

    Article  PubMed  CAS  Google Scholar 

  • Pagani, E. D. and Julian, F. J., 1984, Rabbit papillary muscle myosin isoenzymes and the velocity of muscle shortening, Circ. Res., 54: 586.

    PubMed  CAS  Google Scholar 

  • Quinn, P. J., 1980, The fluidity of cell membranes and its regulation, Prog. Biophys. Mol Biol., 38: 1.

    Article  Google Scholar 

  • Rock, D. E. and Tulenko, T. N., 1991, Excess membrane cholesterol and atherosclerosis impair ATP-dependent K+ channel activation in arterial smooth muscle cells, FASEB J., 5: A532.

    Google Scholar 

  • Rusch, N. J. and Hermsmeyer, K., 1988, Calcium currents are altered in the vascular muscle cell membrane of spontaneous hypertensive rats, Circ. Res., 63: 997.

    PubMed  CAS  Google Scholar 

  • Schnitzky, M. and Barenholz, Y., 1978, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta., 515: 367.

    Google Scholar 

  • Somlyo, A. P., 1985, Excitation-contraction coupling and the ultrastructure of smooth muscle, Circ. Res., 57: 497.

    PubMed  CAS  Google Scholar 

  • Stekiel, W. J., Contney, S. J., and Lombard, J. H., 1986, Small vessel membrane potential, sympathetic input, and electrogenic pump rate in SHR, Am. J. Physiol, 250:C547.

    PubMed  CAS  Google Scholar 

  • Sugiyama, T., Yoshizumi, M., Takaku, F., and Yazaki, Y., 1990, Abnormal calcium handling in vascular smooth muscle cells of spontaneously hypertensive rats, J. Hypertension, 8: 369.

    Article  CAS  Google Scholar 

  • Triggle, C. R., 1989, Reactivity and sensitivity changes of blood vessels in hypertension, in: “Blood Vessel Changes in Hypertension: Structure and Function, Vol. 1”, R. M. K. W. Lee, ed., CRC Press, Boca Raton, p. 25.

    Google Scholar 

  • Tulenko, T. N., Bialecki, R., Gleason, M., and D’Angelo, G., 1990, Ion channels, membrane lipids and cholesterol: A role for membrane lipid domains in arterial function, in: “Potassium Channels: Basic Function and Therapeutic Aspects”, T. Colatsky, ed., Alan R. Liss, New York, p. 187.

    Google Scholar 

  • Tulenko, T. N., Rabinowitz, J. L., Cox, R. H., and Santamore, W. P., 1988, Altered Na+/K+-ATPase, cell Na+ and lipid profiles in canine arterial wall with chronic cigarette smoking, Eur. J. Biochem., 20: 285.

    CAS  Google Scholar 

  • Tulenko, T. N., Lapatofsky, D., and Cox, R. H., 1988, Alterations in membrane phospholipid bilayer composition with age in the Fisher 344 rat, Physiologist, 31: A138.

    Google Scholar 

  • Upadhya, A., Fariel, M. R., Bagshaw, R. J., Cox, R. H., and Chacko, S., 1986, Alteration of the contractile proteins of the arterial muscle in hypertension, Fed. Proc, 45: 1074.

    Google Scholar 

  • van Blitterswijk, W. B., van der Meer, B., and Hilkmann, H., 1987, Quantitative contributions of cholesterol and the individual classes of phospholipids and their degree of fatty acyl (un)saturation to membrane fluidity measured by fluorescence polarization, Biochemistry, 26: 1746.

    Article  PubMed  Google Scholar 

  • Webb, R. C. and Bohr, D. F., 1978, Mechanism of membrane stabilization by calcium in vascular smooth muscle, Am. J. Physiol, 235: C227.

    PubMed  CAS  Google Scholar 

  • Whall Jr., C. W., Myers, M. M., and Halpern, W., 1980, Norepinephrine sensitivity, tension development and neuronal uptake in resistance arteries from spontaneously hypertensive and normotensive rats, Blood Vessels, 17: 1.

    PubMed  CAS  Google Scholar 

  • White, R. E. and Carrier, G. O., 1988, Enhanced alpha-adrenergic neuroeffector system in diabetes: importance of calcium, Am. J. Physiol., 255: H1036.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Cox, R.H., Tulenko, T.N. (1991). Altered Excitation-Contraction Coupling in Hypertension: Role of Plasma Membrane Phospholipids and Ion Channels. In: Moreland, R.S. (eds) Regulation of Smooth Muscle Contraction. Advances in Experimental Medicine and Biology, vol 304. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6003-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6003-2_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6005-6

  • Online ISBN: 978-1-4684-6003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics