Characteristics of the Voltage-Dependent Calcium Channel in Smooth Muscle: Patch-Clamp Studies

  • Kenji Kitamura
  • Noriyoshi Teramoto
  • Masahiro Oike
  • Zhiling Xiong
  • Shunichi Kajioka
  • Yoshihito Inoue
  • Bernd Nilius
  • Hirosi Kuriyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


Visceral smooth muscle cells, including vascular smooth muscle cells, possess various types of Ca channels. The voltage-dependent Ca channel is commonly observed in many tissues and is thought to play an important role in the generation of action potentials. Neural transmitters, hormones, autacoids, peptides and other substances activate individual receptors and cause activation of the receptor-operated ion channels which are permeable to Na and Ca, and in some tissues, CI ion. Thus, receptor activation may induce an influx of Ca via activation of the receptor-operated channel and voltage-dependent Ca channel, and also induce release of Ca from the sarcoplasmic reticulum (SR) via synthesis of inositol 1,4,5-trisphosphate (IP3). In addition, the concentration gradient between extra- and intra-cellular Ca (2.5 mM and 100 nM, respectively) may promote the passive influx of Ca. However, analysis of this current has not yet been made in detail. In this chapter, we discuss mainly the features of the voltage-dependent Ca channel recorded from visceral smooth muscle cells using voltage- and patch-clamp procedures, and also compare their characteristics to those in cardiac muscle cells.


Smooth Muscle Cell Cardiac Muscle Cell Single Smooth Muscle Cell Smooth Muscle Cell Membrane Smooth Muscle Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, P. I., Bolton, T. B., Long, R. J., and Mackenzie, I., 1988, Calcium currents in single isolated smooth muscle cells from the rabbit ear artery in normal-calcium and high-barium solution, J. Physiol, 405: 57.Google Scholar
  2. Abdel-Latif, A. A., 1986, Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers, Pharmacol. Rev., 38: 227.PubMedGoogle Scholar
  3. Akaike, N., Kostyuk, P. G., and Osipchuk, Y. V., 1989, Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones, J. Physiol., 412: 181.PubMedGoogle Scholar
  4. Amedee, T., Renaud, J. F., Jmari, K., Lombert, A., Mironneau, J., and Lazdunski, M., 1986, The presence of Na+ channels in myometrial smooth muscle cells revealed by specific neurotoxin, Biochem. Biophys. Res. Commun., 137: 675.PubMedCrossRefGoogle Scholar
  5. Ashendel, C. L., Staller, J. M., and Boutwell, R. K., 1983, Identification of a calcium-and phospholipid-dependent phorbol ester binding activity in the solution fraction of mouse tissues, Biochem. Biophys. Res. Commun., 111: 340.PubMedCrossRefGoogle Scholar
  6. Bauer, V. and Kuriyama, H., 1982, Evidence for non-cholinergic and non-adrenergic transmission in the guineapig, J. Physiol., 330: 95.PubMedGoogle Scholar
  7. Bechern, M. and Schramm, M., 1987, Calcium-agonists, J. Mol. Cell. Cardiol., 19(Suppl. 2): 63.Google Scholar
  8. Benham, C. D., 1989, ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery, J. Physiol., 419: 689.PubMedGoogle Scholar
  9. Benham, C. D. and Bolton, T. B., 1983, Patch-clamp studies of slow potential-sensitive potassium channels in longitudinal smooth muscle cells of rabbit jejunum, J. Physiol, 340: 469.PubMedGoogle Scholar
  10. Benham, C. D., Bolton, T. B., Lang, R. J., and Takewaki, T., 1985, The mechanism of action of Ba2+ and TEA on single Ca2+-activated K+ channels in arterial and intestinal smooth muscle cell membrane, Pflügers Arch., 403: 120.PubMedCrossRefGoogle Scholar
  11. Benham, C. D., Hess, P., and Tsien, R. W., 1987, Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings, Circ. Res., 61(Suppl 1): 10.Google Scholar
  12. Benham, C. D. and Tsien, R. W., 1987, A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle, Nature, 328: 275.PubMedCrossRefGoogle Scholar
  13. Benoit, E., Corbier, A., and Dubois, J.-M., 1985, Evidence for two transient sodium currents in the frog node of Ranvier, J. Physiol, 361: 339.PubMedGoogle Scholar
  14. Berridge, M. J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J., 220: 345.PubMedGoogle Scholar
  15. Berridge, M. J., 1986, Intracellular signalling through inositol trisphosphate and diacylglycerol, Biol. Chem. Hoppe-Seyler., 367: 447.PubMedCrossRefGoogle Scholar
  16. Berridge, M. J., 1988, Inositol trisphosphate-induced membrane potential oscillations in Xenopus oocytes, J. Physiol, 403: 589.PubMedGoogle Scholar
  17. Berridge, M. J. and Irvine, R. F., 1989, Inositol phosphates and cell signalling, Nature, 341: 197.PubMedCrossRefGoogle Scholar
  18. Bolton, T. B. and Large, W. A., 1986, Are junction potentials essential? Dual mechanism of smooth muscle cell activation by transmitter released from autonomic nerves, Quart. J. Exp. Physiol, 71: 1.Google Scholar
  19. Bolton, T. B. and Lim, S. P., 1989, Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine, J. Physiol., 409: 385.PubMedGoogle Scholar
  20. Brown, A. M. and Birnbaumer, L., 1988, Direct G protein gating of ion channels, Am. J. Physiol, 254: H401.PubMedGoogle Scholar
  21. Brown, A. M., Kunze, D. L., and Yatani, A., 1986, Dual effects of dihydro-pyridines on whole cell and unitary calcium currents in single ventricular cells of guinea-pig, J. Physiol, 379: 495.PubMedGoogle Scholar
  22. Bülbring, E. and Tomita, T., 1987, Catecholamine action on smooth muscle, Pharmacol Rev., 39: 49.PubMedGoogle Scholar
  23. Burnstock, G, 1980, Cholinergic and purinergic regulation of blood vessels, in: “Handbook of Physiology. The Cardiovascular System, section 2, vol. II”, D. F. Bohr, A. P. Somlyo, H. V. Sparks, Jr., eds., Am. Physiol. Soc, Bethesda, p. 567.Google Scholar
  24. Caffrey, J. M., Josephson, I. R., and Brown, A. M., 1986, Calcium channels of amphibian and mammalian aorta smooth muscle cells, Biophys. J., 49: 1237.PubMedCrossRefGoogle Scholar
  25. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase C by tumor-promoting phorbol esters, J. Biol Chem., 259: 7849.Google Scholar
  26. Chen, G. and Suzuki H., 1988, Dissociation of the ACh-induced hyper-polarization and relaxation by methylene blue or haemoglobin in the rat main pulmonary artery, Jpn. J. Pharmacol., 46: 184p.Google Scholar
  27. DeMay, J. G. and Vanhoutte, P. M., 1983, Anoxia and endothelium-dependent reactivity of the canine femoral artery, J. Physiol, 335: 65.Google Scholar
  28. Dolphin, A. C. and Scott, R. H., 1989, Interaction between calcium channel ligands and guanine nucleotides in cultured rat sensory and sympathetic neurons, J. Physiol, 413: 271.PubMedGoogle Scholar
  29. Droogmans, G. and Callewaert, G, 1986, Ca2+-channel current and its modification by the dihydropyridine agonist BAY K 8644 in the isolated smooth muscle cells, Pflügers Arch., 406: 259.PubMedCrossRefGoogle Scholar
  30. Droogmans, G., Declerck, I., and Casteels, R., 1987, Effects of adrenergic agonists on Ca2+-channel currents in single vascular smooth muscle cells, Pflügers Arch., 409: 7.PubMedCrossRefGoogle Scholar
  31. Fleckenstein, A., 1983, History of calcium antagonists, Circ. Res., 52: 3.Google Scholar
  32. Furchgott, R. F. and Zawadzki, J. V., 1980, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature, 288: 373.PubMedCrossRefGoogle Scholar
  33. Furuichi, T., Yoshikawa, S., Miyawaki, A., Wada, K., Maeda, N., and Mikoshiba, K., 1989, Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature, 342: 32.PubMedCrossRefGoogle Scholar
  34. Ganitkevich, V. YA., Shuba, M. F., and Sminov, S. V., 1986, Potential-dependent calcium inward current in a single isolated smooth muscle cell of the guinea-pig taenia coli, J. Physiol., 380: 1.PubMedGoogle Scholar
  35. Gleason, M. M. and Flaim, S. F., 1986, Phorbol ester contracts rabbit thoracic aorta by increasing intracellular calcium and by activating calcium influx, Biochem. Biophys. Res. Comm., 138: 2362.CrossRefGoogle Scholar
  36. Godfraind, T., Miller, R., and Wibo, M., 1986, Calcium antagonism and calcium entry blockade, Pharmacol. Rev., 38: 321.PubMedGoogle Scholar
  37. Hagiwara, S., 1983, “Membrane potential-dependent ion channels in cell membrane. Phylogenic and developmental approaches”, Raven Press, New York.Google Scholar
  38. Hering, S., Beech, D. J., and Bolton, T. B., 1987, Voltage dependence of the actions of nifedipine and Bay K 8644 on barium currents recorded from single smooth muscle cells from rabbit ear artery, Biomed. Biochem. Acta, 467: S657.Google Scholar
  39. Heschler, J., Tang, M., Jastorff, B., and Trautwein, W., 1987, On the mechanism of histamine induced enhancement of the cardiac Ca2+ current, Pflügers Arch., 410: 23.CrossRefGoogle Scholar
  40. Hess, P., Lamsman, J. B., and Tsien, R. W., 1984, Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists, Nature, 311: 538.PubMedCrossRefGoogle Scholar
  41. Hume, J. R. and Leblanc, N., 1989, Macroscopic K+ currents in single smooth muscle cells of the rabbit portal vein, J. Physiol., 413: 49.PubMedGoogle Scholar
  42. Hwang, K. S. and van Breemen, C., 1987, Ryanodine modulation of 45Ca efflux and tension in rabbit aortic smooth muscle, Pflügers Arch., 408: 343.PubMedCrossRefGoogle Scholar
  43. Ignarro, L. J., 1989, Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein, Circ. Res., 65: 1.PubMedGoogle Scholar
  44. Ignarro, L. J., Byrns, R. E., and Wood, K. S., 1987, Endothelium-dependent modulation of cGMP levels and intrinsic smooth muscle tone in isolated bovine intrapulmonary artery and vein, Circ. Res., 60: 82.PubMedGoogle Scholar
  45. Inoue, R., Kitamura, K., and Kuriyama, H., 1985, Two Ca-dependent K-channels classified by the application of tetraethylammonium distribute to smooth muscle membranes of the rabbit portal vein, Pflügers Arch., 405: 173.PubMedCrossRefGoogle Scholar
  46. Inoue, R., Kitamura, K., and Kuriyama, H., 1987, Acetylcholine activates single sodium channels in smooth muscle cells, Pflügers Arch., 410: 69.PubMedCrossRefGoogle Scholar
  47. Inoue, R., Okabe, K., Kitamura, K., and Kuriyama, H., 1986, A newly identified Ca2+ dependent K+ channel in the smooth muscle cell membrane of single cells dispersed from the rabbit portal vein, Pflügers Arch., 406: 138.PubMedCrossRefGoogle Scholar
  48. Inoue, Y., Oike, M., Nakao, K., Kitamura, K., and Kuriyama, H, 1990, Endothelin augments unitary Ca channel currents on the smooth muscle cell membrane of guinea-pig portal vein, J. Physiol., 423: 171.PubMedGoogle Scholar
  49. Inoue, Y., Xiong, Z., Kitamura, K., and Kuriyama, H., 1989, Modulation produced by nifedipine of the unitary Ba current of dispersed smooth muscle cells of the rabbit ileum, Pflügers Arch., 414: 534.PubMedCrossRefGoogle Scholar
  50. Irvine, R. F., 1989, How do inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate regulate intracellular Ca2+?, Biochem. Soc. Trans., 17: 6.PubMedGoogle Scholar
  51. Itoh, T., Izumi, H., and Kuriyama, H., 1982, Mechanisms of relaxation induced by activation of β-adrenoceptors in smooth muscle cells of the guinea-pig mesenteric artery, J. Physiol., 326: 475.PubMedGoogle Scholar
  52. Itoh, T., Kanmura, Y., and Kuriyama, H., 1988, Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery, J. Physiol., 376: 231.Google Scholar
  53. Kajioka, S., Oike, M., and Kitamura, K., 1990, Nicorandil opens a Ca-dependent and ATP-sensitive potassium channel in the smooth muscle cells of the rat portal vein, J. Pharmacol. Exp. Ther., 254: 905.PubMedGoogle Scholar
  54. Kass, R. S., 1987, Voltage-dependent modulation of cardiac calcium channel current by optical isomers of Bay K 8644: Implications for channel gating, Circ. Res., 61: 1.Google Scholar
  55. Kass, R. S. and Krafte, D. S., 1987, Negative surface charge density near heart calcium channels. Relevance to block by dihydropyridines, J. Gen. Physiol, 89: 629.PubMedCrossRefGoogle Scholar
  56. Kawashima, Y. and Ochi, R., 1987, Two types of calcium channels in isolated vascular smooth muscles, J. Physiol Soc. Jpn, 49: 369p.Google Scholar
  57. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1983, Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol Chem., 258: 11442.PubMedGoogle Scholar
  58. Klöckner, U. and Isenberg, G., 1985, Calcium current of cesium loaded isolated smooth muscle cells (unitary bladder of the guinea pig), Pflügers Arch., 405: 340.PubMedCrossRefGoogle Scholar
  59. Kobayashi, S., Somlyo, A. P., and Somlyo, A. V., 1988, Heparin inhibits the inositol 1,4,5-trisphosphate-dependent, but not the independent, calcium release induced by guanine nucleotide in vascular smooth muscle, Biochem. Biophys. Res. Comm., 153: 625.PubMedCrossRefGoogle Scholar
  60. Kokubun, S., Prod’hom, B., Becker, C., Porzzig, H., and Reuter, H., 1986, Studies on Ca channels in intact cardiac cells: Voltage-dependent effects and cooperative interactions of dihydropyridine enantiomers, Mol. Pharmacol, 30: 571.PubMedGoogle Scholar
  61. Komori, K. and Suzuki, H, 1987a, Electrical responses of smooth muscle cells during cholinergic vasodilation in the rabbit saphenous artery, Circ. Res., 61: 586.PubMedGoogle Scholar
  62. Komori, K. and Suzuki, H., 1987b, Heterogenous distribution of muscarinic receptors in the rabbit saphenous artery, Br. J. Pharmacol., 92: 657.PubMedGoogle Scholar
  63. Kume, H., Takai, A., Tokuno, M., and Tomita, H, 1989, Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation, Nature, 341: 152.PubMedCrossRefGoogle Scholar
  64. Leblanc, N. and Hume, J. R., 1989, D600 block of L-type Ca2+ channel in vascular smooth muscle cells: Comparison with permanently charged derivative, D890, Am. J. Physiol., 257: C689.PubMedGoogle Scholar
  65. Lee, K. S. and Tsien, R. W., 1983, Mechanism of calcium channel blockade by verapamil, D600, diltiazem, and nifedipine in single dialyzed heart cells, Nature, 302: 790.PubMedCrossRefGoogle Scholar
  66. Litten, R. Z., Suba, E. A., and Roth, B. L., 1987, Effects of a phorbol ester on rat aortic contraction and calcium influx in the presence or absence of Bay K 8644, Eur. J. Pharmacol., 144: 185.PubMedCrossRefGoogle Scholar
  67. Makita, Y., 1984, Effects of adrenoceptor agonists and antagonists on smooth muscle cells and neuromuscular transmission in the guinea-pig renal artery and vein, Br. J. Pharmacol., 80: 671.Google Scholar
  68. Mannhold, R., Rodenkirchen, R., and Bayer, R., 1982, Qualitative and quantitative structure-activity relationships of specific Ca antagonists, Prog. Pharmacol, 5: 25.Google Scholar
  69. McDonald, T. F., Pelzer, D., and Trautwein, W., 1984, Cat ventricular muscle treated with D600: Characteristics of calcium channel block and unblock, J. Physiol, 325: 217.Google Scholar
  70. Mironneau, J. and Savineau, J.-P., 1980, Effects of calcium ions on outward membrane currents in rat uterine smooth muscle, J. Physiol., 302: 411.PubMedGoogle Scholar
  71. Moncada, S. and Vane, J. R., 1979, Pharmacology and endogenous roles of prostaglandin, endoperoxides, thromboxane A2, and prostacyclin, Pharmacol. Rev., 30: 293.Google Scholar
  72. Myers, P. R., Minor, R. L., Guerra, R., Bates, J. N., and Harrison, D. G., 1990, Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitrosocysteine than nitric oxide, Nature, 345: 161.PubMedCrossRefGoogle Scholar
  73. Nakao, K., Inoue, Y., Oike, M., Kitamura, K., and Kuriyama, H., 1990, Mechanisms of endothelin-induced augmentation of the electrical and mechanical activity in rat portal vein, Pflügers Arch., 415: 526.PubMedCrossRefGoogle Scholar
  74. Nakao, K., Okabe, K., Kitamura, K., Kuriyama, H., and Weston, A. H., 1988, Characteristics of cromakalim-induced relaxations in the smooth muscle cells of guinea-pig mesenteric artery, Br. J. Pharmacol., 95: 785.Google Scholar
  75. Nakazawa, K., Matsui, N., Shigenobu, K., and Kasuya, Y., 1987, Contractile response and electrophysiological properties in enzymatically dispersed smooth muscle cells of rat vas deferens, Pflügers Arch., 408: 112.PubMedCrossRefGoogle Scholar
  76. Nawrath, H., Ten Eick, R. E., McDonald, T. F., and Trautwein, W., 1977, On the mechanism underlying the action of D600 on slow inward current and tension in mammalian myocardium, Circ. Res., 40: 408.PubMedGoogle Scholar
  77. Nelson, M. T., Standen, N. B., Brayden, J. E., and Worley III, J.F., 1988, Noradrenaline contracts arteries by activating voltage-dependent calcium channel, Nature, 336: 382.PubMedCrossRefGoogle Scholar
  78. Nishiye, E., Nakao, K., Itoh, T., and Kuriyama, H., 1989, Factors inducing endothelium-dependent relaxation in the guinea-pig basilar artery as estimated from the action of haemoglobin, Br. J. Pharmacol., 96: 645.PubMedGoogle Scholar
  79. Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature, 308: 693.PubMedCrossRefGoogle Scholar
  80. Nishizuka, Y., 1986, Studies and prospectives of protein kinase C., Science, 233: 305.PubMedCrossRefGoogle Scholar
  81. Nishizuka, Y., 1988, The molecular heterogeneity of protein kinase C and its implications for cellular regulation, Nature, 344: 661.CrossRefGoogle Scholar
  82. Ohya, Y., Kitamura, K., and Kuriyama, H., 1987, Modulation of ionic currents in smooth muscle balls of the intestine by intercellularly perfused ATP and cyclic AMP, Pflügers Arch., 408: 465.PubMedCrossRefGoogle Scholar
  83. Ohya, Y. and Sperelakis, N., 1988, Guanosine triphosphate dependent stimulation of L-type calcium channels of vascular smooth muscle, Physiologist, 31: A38.Google Scholar
  84. Ohya, Y., Terada, K., Kitamura, K., and Kuriyama, H., 1986, Membrane currents recorded from a fragment of rabbit intestinal smooth muscle cells, Am. J. Physiol., 251: C335.PubMedGoogle Scholar
  85. Ohya, Y., Terada, K., Yamaguchi, K., Inoue, R., Okabe, K., Kitamura, K., Hirata, M., and Kuriyama, H., 1988, Effects of inositol phosphates on the membrane activity of smooth muscle cells of the rabbit portal vein, Pflügers Arch., 412: 382.PubMedCrossRefGoogle Scholar
  86. Oike, M., Inoue, Y., Kitamura, K., and Kuriyama, H., 1990, Dual actions of FRC8653, a novel dihydropyridine derivative, on the Ba current recorded from the rabbit basilar artery, Circ. Res., 67: 993.PubMedGoogle Scholar
  87. Okabe, K., Kitamura, K., and Kuriyama, H., 1987, Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery, Pflügers Arch., 409: 561.PubMedCrossRefGoogle Scholar
  88. Okabe, K., Kitamura, K., and Kuriyama, H., 1988, The existence of a highly tetrodotoxin sensitive Na channel in freshly dispersed smooth muscle cells of the rabbit main pulmonary artery, Pflügers Arch., 411: 423.PubMedCrossRefGoogle Scholar
  89. Palmer, R. M. J., Ferrige, A. G., and Moncada, S., 1987, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 327: 524.PubMedCrossRefGoogle Scholar
  90. Pelzer, D., Cavalie A., Hofmann, F., Trautwein, W., and McDonald, T. F., 1988, Dual stimulating and inhibitory effects of the phenylalkylamine calcium antagonist D600 on cardiac and skeletal muscle calcium channels, Pflügers Arch., 411: 39.Google Scholar
  91. Pidoplichko, V. I., 1986, Two different tetrodotoxin-separable inward sodium currents in the membrane of isolated cardiomyocytes, Gen. Physiol. Biophys., 6: 593.Google Scholar
  92. Rosenthal, W., Heschler, J., Trautwein, W., and Schultz, G., 1988, Control of voltage dependent Ca2+ channels by G-protein-coupled receptor, FASEB J., 2: 2784.PubMedGoogle Scholar
  93. Sadoshima, J., Akaike, N., Tomoike, H., and Nakamura, M., 1988, Ca-activated K channel in cultured smooth muscle cells of rat aortic media, Am. J. Physiol., 255:H410.Google Scholar
  94. Sakai, T., Terada, K., Kitamura, K., and Kuriyama, H., 1988, Ryanodine inhibits the Ca-dependent KL current after depletion of Ca stored in smooth muscle cells of the rabbit ileal longitudinal muscle, Br. J. Pharmacol, 95: 1089.PubMedGoogle Scholar
  95. Sanguinetti, M. C. and Kass, R. S., 1984, Voltage-dependent block of calcium channel current in the calf cardiac purkinje fiber by dihydropyridine calcium channel antagonists, Circ. Res., 55: 336.PubMedGoogle Scholar
  96. Schmiedtmayer, J., 1985, Behaviour of chemically modified sodium channels in frog nerve supports a three-state model of inactivation, Pflügers Arch., 404: 21.CrossRefGoogle Scholar
  97. Shearman, M. S., Sekiguchi, K., and Nishizuka, Y., 1989, Modulation of ion channel activity: A key function of the protein kinase C family, Pharmacol. Rev., 41: 211.PubMedGoogle Scholar
  98. Shears, S. B., 1989, Metabolism of the inositol phosphates produced upon receptor activation, Biochem. J., 260: 313.PubMedGoogle Scholar
  99. Shirahase, H., Usui, H., Kurahashi, K., Fujiwara, M., and Fukui, K., 1987, Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries, Pharmacology, 10: 517.Google Scholar
  100. Somlyo, A. P., Walker, J. W., Goldman, Y. E., Trentham, D. R., Kobayashi, S., Kitazawa, T., and Somlyo, A. V., 1988, Inositol trisphosphate, calcium, and muscle contraction, Phil. Trans. R. Soc. Lond. B, 320: 399.CrossRefGoogle Scholar
  101. Sperelakis, N. and Ohya, Y., 1990, Cyclic nucleotide regulation of Ca2+ slow channels and neurotransmitter release in vascular muscle, in: “Frontiers in Smooth Muscle Research”, N. Sperelakis and J. D. Wood, eds., Wiley-Liss, New York, p. 277.Google Scholar
  102. Standen, N. B., Quayle, J. M., Davis, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T., 1989, Hyperpolarizing vasodilators activate ATP-sensitive K+-channels in arterial smooth muscle, Science, 245: 177.PubMedCrossRefGoogle Scholar
  103. Sturek, M. and Hermsmeyer, K., 1986, Calcium and sodium channels in spontaneously contracting vascular muscle cells, Science, 233: 475.PubMedCrossRefGoogle Scholar
  104. Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., 1984, Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery, Biochem. Biophys. Res. Comm., 120: 481.PubMedCrossRefGoogle Scholar
  105. Supattapone, S., Worley, P. F., Baraban, J. M., and Snyder, S. M., 1988, Solubilization, purification, and characterization of an inositol trisphosphate receptor, J. Biol. Chem., 263: 1530.PubMedGoogle Scholar
  106. Sutko, J. L. and Kenyon, J. L., 1983, Ryanodine modification of cardiac muscle responses to potassium-free solutions, J. Gen. Physiol, 82: 385.PubMedCrossRefGoogle Scholar
  107. Suzuki, R., Osa, T., and Kobayashi, S., 1983, Cholinergic inhibitory response in the bovine iris dilator muscle, Invest. Ophthalmol. Vis. Sci., 24: 760.PubMedGoogle Scholar
  108. Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Minamino, N., Matsuo, H., Ueda, M., Hanaoka, M., Hirose, T., and Numa, S., 1989, Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor, Nature, 339: 439.PubMedCrossRefGoogle Scholar
  109. Toro, L. and Stefani, E., 1987, Ca2+ and K+ currents in cultured vascular smooth muscle cells from rat aorta, Pflügers Arch., 408: 417.PubMedCrossRefGoogle Scholar
  110. Terada, K., Kitamura, K., and Kuriyama, H., 1987a, Blocking actions of Ca2+ antagonists on the Ca2+ channels in the smooth muscle cell membrane of rabbit small intestine, Pflügers Arch., 408: 552.Google Scholar
  111. Terada, K., Nakao, K., Okabe, K., Kitamura, K., and Kuriyama, H., 1987b, Action of the 1,4-dihydropyridine derivative, KW-3049, on the smooth muscle membrane of the rabbit mesenteric artery, Br. J. Pharmacol., 92: 615.Google Scholar
  112. Terada, K., Ohya, Y., Kitamura, K., and Kuriyama, H., 1987c, Actions of flunarizine, a Ca++ antagonist, on ionic currents in fragmented smooth muscle cells of the rabbit small intestine, J. Pharmacol. Exp. Ther., 240: 978.Google Scholar
  113. Triggle, D. J., Skattebol, A., Rampe, D., Joslyn, A., and Gengo, P., 1986, Chemical pharmacology of Ca2+ channel ligands, in: “New Insight Into Cell and Membrane Transport Processes”, G. Post and S. T. Crooke, eds., Plenum Press, New York, p. 125.CrossRefGoogle Scholar
  114. Vanhoutte, P. M., Rubanyi, G. M., Miller, J. M., and Houston, D. S., 1986, Modulation of vascular smooth muscle contraction by the endothelium, Ann. Rev. Physiol., 48: 307.CrossRefGoogle Scholar
  115. Vivaudou, M. B., Clapp, L. H., Walsh Jr., J. V., and Singer, J. J., 1988, Regulation of one type of Ca2+ current in smooth muscle cells by diacyl-glycerol and acetylcholine, FASEB J., 2: 2497.PubMedGoogle Scholar
  116. Walsh Jr., J. V. and Singer, J. J., 1987, Identification and characterization of major ionic currents in isolated smooth muscle cells using the voltage-clamp technique, Pflügers Arch., 408: 83.PubMedCrossRefGoogle Scholar
  117. Warner, T. D., De Nucci, G. R., and Vane, J. R., 1989, Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat, Eur. J. Pharmacol., 159: 325.PubMedCrossRefGoogle Scholar
  118. Wong, G. K., 1984, Irreversible modification of sodium channel inactivation in toad myelinated nerve fibres by the oxidant chloramine-T, J. Physiol., 346: 127.Google Scholar
  119. Worley III, J. F., Deitmer, J. W., and Nelson, M. T., 1986, Single nisoldipine-sensitive calcium channels in smooth muscle cells isolated from rabbit mesenteric artery, Proc. Natl Acad. Sci. U.S.A., 83: 5746.PubMedCrossRefGoogle Scholar
  120. Wright, C. E. and Fozzard, J. R., 1988, Regional vasodilation is a prominent feature of the haemodynamic response to endothelin in anesthetized spontaneous hypertensive rats, Eur. J. Pharmacol., 155: 201.PubMedCrossRefGoogle Scholar
  121. Xiong, Z. L., Kitamura, K., and Kuriyama, H., 1991, ATP activates a nonselective cation channel and modulates the voltage-dependent Ca channel in rabbit portal vein, J. Physiol., submitted.Google Scholar
  122. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., and Masaki, T., 1988, A novel potent vasoconstrictor peptide produced by vascular endothelial cells, Nature, 332: 411.PubMedCrossRefGoogle Scholar
  123. Yatani, A., Seidel, C. L., Allen, J., and Brown, A. M., 1987, Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein, Circ. Res., 60: 523.PubMedGoogle Scholar
  124. Yoshino, M., Someya, T., Nishino, A., and Yabu, H., 1988, Whole-cell and unitary Ca channel currents in mammalian intestinal smooth muscle cells: Evidence for existence of two types of Ca channels, Pflügers Arch., 411: 229.PubMedCrossRefGoogle Scholar
  125. Yoshitomi, T. and Ito, Y., 1986, Double reciprocal innervations in dog iris sphincter and dilator muscles, Invest. Ophthalmol. Vis. Sci., 27: 83.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Kenji Kitamura
    • 1
  • Noriyoshi Teramoto
    • 1
  • Masahiro Oike
    • 1
  • Zhiling Xiong
    • 1
  • Shunichi Kajioka
    • 1
  • Yoshihito Inoue
    • 1
  • Bernd Nilius
    • 1
  • Hirosi Kuriyama
    • 1
  1. 1.Department of Pharmacology Faculty of MedicineKyushu UniversityFukuokaJapan

Personalised recommendations