Can Different Four-State Crossbridge Models Explain Latch and the Energetics of Vascular Smooth Muscle?

  • Chi-Ming Hai
  • Christopher M. Rembold
  • Richard A. Murphy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 304)


Ca2+ binding to troponin and the resulting thin filament conformational change acts as a switch in striated muscle that enables crossbridges to bind to actin and cycle (Rüegg, 1986). This allosteric “Ca2+-switch” mechanism generates only two primary crossbridge states: free and attached (Huxley, 1957).


Myosin Light Chain Kinase Regulatory Light Chain Detachment Rate Myosin Light Chain Phosphatase Myosin Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksoy, M. O., Murphy, R. A., and Kamm, K. E., 1982, Role of Ca2+ and myosin light chain phosphorylation in regulation of smooth muscle, Am. J. Physiol, 242: C109.PubMedGoogle Scholar
  2. Arner, A. and Hellstrand, P., 1983, Activation of contraction and ATPase activity in intact and chemically skinned smooth muscle of rat portal vein: dependence on Ca++ and muscle length, Circ. Res., 53: 695.PubMedGoogle Scholar
  3. Bialojan, C., Merkel, L., Rüegg, J. C., Gifford, D., and DiSalvo, J., 1985, Prolonged relaxation of detergent-skinned smooth muscle involves decreased endogenous phosphatase activity, Proc. Soc. Exp. Biol. Med., 178: 648.PubMedGoogle Scholar
  4. Dillon, P. F., Aksoy, M. O., Driska, S. P., and Murphy, R. A., 1981, Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle, Science, 211: 495.PubMedCrossRefGoogle Scholar
  5. Dillon, P. F. and Murphy, R. A., 1982, Tonic force maintenance with reduced shortening velocity in arterial smooth muscle, Am. J. Physiol, 242: C102.PubMedGoogle Scholar
  6. Driska, S. P., Stein, P. G., and Porter, R., 1989, Myosin dephosphorylation during rapid relaxation of hog carotid artery smooth muscle, Am. J. Physiol, 256:C315.PubMedGoogle Scholar
  7. Eisenberg, E. and Hill, T.L., 1985, Muscle contraction and free energy transduction in biological systems, Science, 227: 999.PubMedCrossRefGoogle Scholar
  8. Glück, E. and Paul, R. J., 1977, The aerobic metabolism of porcine carotid artery and its relationship to isometric force: Energy cost of isometric contraction, Pflügers Arch., 370: 9.PubMedCrossRefGoogle Scholar
  9. Hai, C.-M. and Murphy, R. A., 1988a, Cross-bridge phosphorylation and regulation of latch state in smooth muscle, Am. J. Physiol, 254: C99.PubMedGoogle Scholar
  10. Hai, C.-M. and Murphy, R. A., 1988b, Regulation of shortening velocity by cross-bridge phosphorylation in smooth muscle, Am. J. Physiol, 255: C86.PubMedGoogle Scholar
  11. Hai, C.-M. and Murphy, R. A., 1989a, Cross-bridge dephosphorylation and relaxation in vascular smooth muscle, Am. J. Physiol, 256: C282.PubMedGoogle Scholar
  12. Hai, C.-M. and Murphy, R. A., 1989b, Crossbridge phosphorylation and the energetics of contraction in the swine carotid media, in: “Muscle Energetics”, R. J. Paul, G. Elzinga, and K. Yamada, eds., Alan R. Liss, New York, p. 253.Google Scholar
  13. Hai, C.-M. and Murphy, R. A., 1991, ATP consumption by smooth muscle as predicted by the four-state crossbridge model, Biophys. J, submitted.Google Scholar
  14. Hartshorne, D. J., Ito, M., and Ikebe, M., 1989, Myosin and contractile activity in smooth muscle, in: “Calcium Protein Signalling”, H. Hidaka, E. Carifoli, A. R. Means, T. Tanaka, eds., Plenum Press, New York, p. 269.Google Scholar
  15. Huxley, A. F., 1957, Muscle structure and theories of contraction, Prog. Biophys. Biophys. Chem., 7: 255.PubMedGoogle Scholar
  16. Kamm, K. E. and Stull, J. T., 1985, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Ann. Rev. Pharmacol. Toxicol, 25: 593.CrossRefGoogle Scholar
  17. Kamm, K. E. and Stull, J. T., 1989, Regulation of smooth muscle contractile elements by second messengers, Ann. Rev. Physiol, 51: 299.CrossRefGoogle Scholar
  18. Krisanda, J. M. and Paul, R. J., 1988, Dependence of force, velocity, and O2 consumption on [Ca2+]o in porcine carotid artery, Am. J. Physiol, 255: C393.PubMedGoogle Scholar
  19. McDaniel, N. L., Rembold, C. M., and Murphy, R. A., 1990, Covalent cross-bridge regulation in smooth muscle, Ann. N.Y. Acad. Sci., 599: 66.PubMedCrossRefGoogle Scholar
  20. Murphy, R. A., 1989, Special topic: Contraction in smooth muscle cells, introduction, Ann. Rev. Physiol, 51: 275.CrossRefGoogle Scholar
  21. Paul, R. J., Glück, E., and Rüegg, J. C., 1976, Cross bridge ATP utilization in arterial smooth muscle, Pflügers Arch., 361: 297.PubMedCrossRefGoogle Scholar
  22. Paul, R. J., 1989, Smooth muscle energetics, Ann. Rev. Physiol, 51: 331.CrossRefGoogle Scholar
  23. Paul, R. J., 1990, Smooth muscle energetics and theories of cross-bridge regulation, Am. J. Physiol, 258: C369.Google Scholar
  24. Peterson, J. W., 1982, Effect of histamine on the energy metabolism of K+-depolarized hog carotid artery, Circ. Res., 50: 848.PubMedGoogle Scholar
  25. Ratz, P. H. and Murphy, R. A., 1987, Contributions of intracellular and extracellular Ca2+ pools to activation of myosin phosphorylation and stress in swine carotid media, Circ. Res., 60: 410.PubMedGoogle Scholar
  26. Ratz, P. H., Hai, C.-M., and Murphy, R. A., 1989, Dependence of stress on cross-bridge phosphorylation in vascular smooth muscle, Am. J. Physiol, 256: C96.PubMedGoogle Scholar
  27. Rembold, C. M. and Murphy, R. A., 1988, Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle, Circ. Res., 63: 593.PubMedGoogle Scholar
  28. Rembold, C. M. and Murphy, R. A., 1990, Latch-bridge model in smooth muscle: [Ca2+]i can quantitatively predict stress, Am. J. Physiol., 259: C251.PubMedGoogle Scholar
  29. Rüegg, J. C., 1986, “Calcium in Muscle Activation”, Springer-Verlag, Berlin.Google Scholar
  30. Singer, H. A. and Murphy, R. A., 1987, Maximal rates of activation in electrically stimulated swine carotid media, Circ. Res., 60: 438.PubMedGoogle Scholar
  31. Tanner, J. A., Haeberle, J. R., and Meiss, R. A., 1988, Regulation of glycerinated smooth muscle contraction and relaxation by myosin phosphorylation, Am. J. Physiol, 255: C34.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Chi-Ming Hai
    • 1
  • Christopher M. Rembold
    • 2
    • 3
  • Richard A. Murphy
    • 2
  1. 1.Section of Physiology and BiophysicsBrown UniversityProvidenceUSA
  2. 2.Department of PhysiologyUniversity of Virginia Health Sciences CenterCharlottesvilleUSA
  3. 3.Department of Internal Medicine (Cardiology)University of Virginia Health Sciences CenterCharlottesvilleUSA

Personalised recommendations