Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 57))

  • 65 Accesses

Abstract

There is a large body of literature using various model systems to address early events in neoplastic transformation. These studies (which encompass various suggested etiologic agents such as viruses, carcinogens, hormones and growth factors, oncogenes, radiation, etc.) all focus on the target cell itself. However, carcinomas arise in organized tissues where there is a close association with mesenchymal cells and their secreted products. Hence, it is reasonable to consider the possibility that abnormal stromal tissue may actively participate in some events of the malignant process. A number of recent studies suggest that this view may be particularly relevant for the induction of breast cancer. These studies provide evidence at the cellular and biochemical level that the fibroblasts obtained from breast cancer patients differ from those of normal women.

This work was supported by DHHS grant P01 CA-44768 and a grant from the Susan G. Komen Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Azzarone, M. Mareel, C. Billard, P. Scemama, C. Chaponnier, and A. Macieira-Coellho, Abnormal properties of skin fibroblasts from patients with breast cancer, Int. J. Cancer 33:759–764 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. S. L. Schor, A. M. Schor, P. Durning, and G. Rushton, Skin fibroblasts obtained from cancer patients display fetal-like migratory behavior on collagen gels, J. Cell Sci. 73:235–244 (1985).

    PubMed  CAS  Google Scholar 

  3. P. Durning, S. L. Schor, and R. A. S. Sellwood, Fibroblasts from patients with breast cancer show abnormal migratory behavior in vitro, Lancet 890-892 (1984).

    Google Scholar 

  4. S. L. Schor, A. M. Schor, G. Rushton, and L. Smith, Adult fetal and transformed fibroblasts display different migratory phenotypes on collagen gels: Evidence for an isomorphic transition during fetal development, J. Cell Sci. 73:221–234 (1985).

    PubMed  CAS  Google Scholar 

  5. E. F. Adams, C. J. Newton, H. Braunsberg, N. Shaikh, M. Ghilchik, and V. H. T. James, Effects of human breast fibroblasts on growth and 17β-estradiol dehydrogenase activity of MCF-7 cells in culture, Breast Cancer Res. and Treatment 11:165–172 (1988).

    Article  CAS  Google Scholar 

  6. B. P. Toole, Chapter 9, in: “Cell Biology of the Extracellular Matrix,” E. D. Hay, ed., Plenum Press, New York (1982).

    Google Scholar 

  7. E. A. Tourley, J. Torrance, Localization of hyaluronate and hyaluronate-binding protein on motile and non-motile fibroblasts, Exp. Cell Res. 161:17–28 (1984).

    Article  Google Scholar 

  8. B. P. Toole, G. Jackson, and J. Gross, Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro, Proc. Natl. Acad. Sci. USA 69:1384–1386 (1972).

    Article  PubMed  CAS  Google Scholar 

  9. M. Brecht, U. Mayer, E. Schlosser, and P. Prehm, Increased hyaluronate synthesis is required for fibroblast detachment and mitosis, Biochem. J. 239:445–450 (1986).

    PubMed  CAS  Google Scholar 

  10. N. Mian, Analysis of cell-growth-phase-related variations in hyaluronate synthase activity of isolated plasma-membrane fractions of cultured human skin fibroblasts, Biochem. J. 237:333–342 (1986).

    PubMed  CAS  Google Scholar 

  11. B. E. Lacy and C. B. Underhill, The hyaluronate receptor is associated with actin filaments, J. Cell Biol. 105:1394–1404 (1987).

    Article  Google Scholar 

  12. J. C. Angello, H. L. Hosick, and L. W. Anderson, Glycosaminoglycan synthesis by a cell line (C1-S1) established from a preneoplastic mouse mammary outgrowth, Cancer Res. 42:4975–4976 (1982).

    PubMed  CAS  Google Scholar 

  13. B. P. Toole, C. Biswas, and J. Gross, Hyaluronate and invasiveness of the rabbit V2 carcinoma, Proc. Natl. Acad. Sci. USA 76:6299 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. K. Kimata, Y. Honma, M. Okayama, K. Oguri, M. Hozumi, and S. Suzuki, Increased synthesis of hyaluronic acid by mouse mammary carcinoma cell variants with high metastatic potential, Cancer Res. 43:1347–1354 (1983).

    PubMed  CAS  Google Scholar 

  15. J. Tekauchi, M. Sobue, E. Sato, M. Shamoto, and K. Miura, Variation in glycosaminoglycan components of breast tumors, Cancer Res. 36:2133–2139 (1976).

    Google Scholar 

  16. G. Manley, and C. Warren, Serum hyaluronic acid in patients with disseminated neoplasm, J. Clin. Pathol. 40:626–630 (1987).

    Article  PubMed  CAS  Google Scholar 

  17. A. B. Roberts, M. A. Anzano, L. C. Lamb, J. M. Smith, and M. B. Sporn, New class of transforming growth factors potentiated by epidermal growth factor: Isolation from non-neoplastic tissues, Proc. Natl. Acad. Sci. USA 78:5339–5343 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. C. Knabbe, M. E. Lippman, L. M. Wakefield, K. C. Flanders, A. Kasid, R. Derynck, and R. B. Dickson, Evidence that transforming growth factor-β is a hormonally regulated negative growth factor in human breast cancer cells, Cell 48:417–428 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. R. B. Dickson, A. Kasid, K. K. Huff, S. E. Bates, C. Knabbe, D. Bronzert, E. P. Gelman, and M. E. Lippman, Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17β-estradiol or v-Ha-ras oncogene, Proc. Natl. Acad. Sci USA 84:837–841 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. R. A. Ignotz and J. Massagué, Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix, J. Biol. Chem. 261:4337–4345 (1986).

    PubMed  CAS  Google Scholar 

  21. J. Massagué, S. Cheifetz, T. Endo, and B. Nadel-Ginard, Type β transforming growth factor is an inhibitor of myogenic differentiation, Proc. Natl. Acad. Sci. USA 83:8206–8210 (1986).

    Article  PubMed  Google Scholar 

  22. A. B. Roberts, M. B. Sporn, R. K. Assoian, J. M. Smith, N. S. Roche, L. M. Wakefield, U. I. Heine, L. A. Liotta, V. Falanga, J. H. Kehrl, and A. S. Fanci, Transforming growth factor type β: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro, Proc. Natl. Acad. Sci. USA 83:4167–4171 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. A. Bassols, and J. Massagué, Transforming growth factor type β specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells, Proc. Natl. Acad. Sci. USA 84:5287–5291 (1987).

    Article  Google Scholar 

  24. J.-K. Chen, H. Hoshi, and W. L. McKeehan, Transforming growth factor type β specifically stimulates synthesis of proteoglycan in human adult arterial smooth muscle cells, Proc. Natl. Acad. Sci. USA 84:5287–5291 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. R. A. Ignotz and J. Massagué, cell adhesion protein receptors as targets for transforming growth factors-β action, Cell 51:189–197 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. R. Stern, J. T. Huey, J. Hall, and H. S. Smith, Hyaluronic acid production in response to type-β transforming growth factor distinguishes normal from breast cancer-derived fibroblasts, submitted for publication.

    Google Scholar 

  27. W. Wharton, Newborn human skin fibroblasts senesce in vitro without acquiring adult growth factor requirements, Exp. Cell Res. 154:310 (1984).

    Article  PubMed  CAS  Google Scholar 

  28. W. Schurch, T. A. Seemayer, and R. Lagace, Stromal myofibroblasts in primary invasive and metastatic carcinomas, Virchows Arch. (Pathol. Anat.) a391:125–139 (1981).

    Article  CAS  Google Scholar 

  29. S. H. Barsky, W. R. Green, G. R. Grotendorst, and L. Liotta, Desmoplastic breast carcinoma as a source of human myofibroblasts, Am. J. Pathol. 115:329–333 (1983).

    Google Scholar 

  30. B. A. Gusterson, M. J. Warbutron, D. Mitchell, M. Ellison, A. M. Neville, and P. S. Rudland, Distribution of myoepithelial cells and basement membrane proteins in the normal breast and in benign and malignant breast diseases, Cancer Res. 42:4763–4770 (1982).

    PubMed  CAS  Google Scholar 

  31. A.-P. Sappino, O. Skalli, B. Jackson, W. Schurch, and B. Gabbiani, Smooth muscle differentiation in stromal cell of malignant and non-malignant breast tissues, Int. J. Cancer 41:707–712 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. A. van den Hooff, The part played by the stroma in carcinogenesis, Perspec. Biol. 27:498 (1984).

    Google Scholar 

  33. D. J. Slamon, G. M. Clark, S. J. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science 235:177–182 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. M. van de Vijver, R. Van de Berssalaar, P. Deville, C. Cornelisse, J. Peterse, and R. Nusse, Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene, Mol. Cell. Biol. 7:2019–2023 (1987).

    PubMed  Google Scholar 

  35. C. Theillet, R. Lidereau, C. Escot, P. Hutzell, M. Brunet, J. Gest, J. Schlom, and R. Callahan, Loss of a c-Ha-ras-1 allele and aggressive human primary breast carcinoma, Cancer Res. 46:4776–4781 (1986).

    PubMed  CAS  Google Scholar 

  36. M. J. Cline, H. Battifora, J. Yokota, Proto-oncogene abnormalities in human breast cancer: with anatomic features and clinical course of disease, J. Clin. Oncology 5:999–1006 (1987).

    CAS  Google Scholar 

  37. C. Escot, C. Theillet, R. Ledereau, F. Spyratos, M.-H. Champeme, J. Gest, and R. Callahan, Genetic alteration of the c-myc proto-oncogene (MYC) in human primary breast carcinoma, Proc. Natl. Acad. Sci. USA 83:4834–4838 (1986).

    Article  PubMed  CAS  Google Scholar 

  38. M. H. Kraus, Y. Yuasa, and S. A. Aaronson, A position 12-activated Ha-ras oncogene in all HS578T mammary careinosarcoma cells but not normal mammary cells of the same patient, Proc. Natl. Acad. Sci. USA 81:5384 (1984).

    Article  PubMed  CAS  Google Scholar 

  39. H. Zarbl, S. Sukumar, A. V. Arthur, D. Martin-Zanca, and M. Barbacid, Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats, Nature 315:382–385 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. M. Barbacid, ras genes, Ann. Rev. Biochem. 56:779–827 (1987).

    Article  PubMed  CAS  Google Scholar 

  41. S. Rodenhuis, M. L. van de Wetering, W. J. Moot, S. G. Evers, N. van Zandwizh, J. L. Bos, Mutational activation of the K-ras oncogene: A possible pathogenetic factor in adenocarcinoma of the lung, N. Eng. J. Med. 317:929–935 (1987).

    Article  CAS  Google Scholar 

  42. J. L. Bos, E. R. Feron, S. R. Hamilton, M. Verlaan-de Veries, J. H. van Boom, A. J. van der Eb, B. Vogelstein, Prevalence of ras gene mutations in human colorectal cancers, Nature 327:293–297 (1987).

    Article  PubMed  CAS  Google Scholar 

  43. K. Forrester, C. Almoquera, K. Han, W. E. Gizzle, and M. Perucho, Detection of high incidence of K-ras oncogenes during human colon tumorigenesis, Nature 327:298–303 (1987).

    Article  PubMed  CAS  Google Scholar 

  44. J. L. Bos, D. Toksoz, C. J. Marshall, M. Verlaan-de Veries, Amino acid substitutions in codon 13 of the N-ras oncogene in human acute myeloid leukemia, Nature 315:726–730 (1985).

    Article  PubMed  CAS  Google Scholar 

  45. J. L. Bos, M. Verlaan-de Veries, A. J. van der Eb, J. W. G. Janssen, R. Delwel, B. Lowenberg and L. P. Colby, Mutations in N-ras predominate in acute myeloid leukemia, Blood 69:1237–1241 (1987).

    PubMed  CAS  Google Scholar 

  46. M. T. Prosperi, J. Even, F. Calvo, J. Lebeau, and G. Goubin, Two adjacent mutations at position 12 activate the K-ras-2 oncogene in a human mammary tumor cell line, Qncogene Res. 1:121 (1987).

    CAS  Google Scholar 

  47. S. C. Kozma, M. E. Bogaard, K. Buser, S. M. Saurer, J. L. Bos, B. Groner, and N. E. Hynes, The human c-Kirsten ras gene is activated by a novel mutation in codon 13 in the breast carcinoma cell line MDA-MB231, Nucl. Acid Res. 15:5963–5971 (1987).

    Article  CAS  Google Scholar 

  48. C. F. Rochlitz, G. K. Scott, J. M. Dodson, E. Liu, C. Dollbaum, H. S. Smith, and C. C. Benz, Incidence of activated ras oncogene mutations associated with primary and metastatic human breast cancer, Cancer Res. 49:357–360 (1989).

    PubMed  CAS  Google Scholar 

  49. E. Liu, C. Dollbaum, G. Scott, C. Rochlitz, C. Benz, and H. S. Smith, Molecular lesions involved in the progression of a human breast cancer, Oncogene 3:323–327 (1988).

    PubMed  CAS  Google Scholar 

  50. H. S. Smith, S. R. Wolman, S. H. Dairkee, M. C. Hancock, M. Lippman, A. Leff, and A. J. Hackett, Immortalization in culture: occurrence at a late stage in progression of breast cancer, J. Natl. Cancer Inst. 78:611–615 (1987).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Smith, H.S., Stern, R., Liu, E., Benz, C. (1991). Early and Late Events in the Development of Human Breast Cancer. In: Sudilovsky, O., Pitot, H.C., Liotta, L.A. (eds) Boundaries between Promotion and Progression during Carcinogenesis. Basic Life Sciences, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5994-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5994-4_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5996-8

  • Online ISBN: 978-1-4684-5994-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics