Skip to main content

The Human Melanocyte System as a Model for Studies on Tumor Progression

  • Chapter
Boundaries between Promotion and Progression during Carcinogenesis

Part of the book series: Basic Life Sciences ((BLSC,volume 57))

Abstract

Melanocytes are distinctive cells in the basal layer of the epidermis, the choroid of the eye, certain mucous membranes, and the leptomeninges. Melanocytes arise during embryonal development from pluripotent cells migrating out of the neural crest. Functional maturation, i.e., the process by which cells express specific properties characteristic of the cell type, may progress in melanocytes through several, as yet undefined, stages (Fig. 1). Precursor cells for melanocytes (premelanocytes or melanoblasts) have been identified in human skin1, but these cells have been only preliminarily characterized. The phenotypic and functional characteristics of melanocytes are: a) melanin synthesis through the action of the tyrosinase enzyme; b) dendritic morphology; c) pigment donation to surrounding keratinocytes and d) no detectable proliferation in situ. Despite the undetectable proliferation, a stable 5–6:1 ratio between basal keratinocytes and melanocytes is maintained throughout the life of an individual suggesting a constant renewal of melanocytes.

These studies were supported in part by grants from the NIH, CA-25874, CA-44877, and from the Herzog Foundation.

To whom requests for reprints and all correspondence should be addressed, at The Wistar Institute, 36th Street at Spruce, Philadelphia, PA 19104.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

alpha-MSH:

alpha-melanocyte stimulating hormone

bFGF:

basic fibroblast growth factor; BPE, bovine pituitary extract

CFE:

colony forming efficiency

EGF:

epidermal growth factor

FCS:

fetal calf serum

FSH:

follicle stimulating hormone

IBMX:

isobutyl methyl xanthine

IGF:

insulin-like growth factor

MAb:

monoclonal antibody

MGF:

melanocyte growth factor

MSGA:

melanocyte-stimulating growth activity

NGF:

nerve growth factor

PDGF:

platelet derived growth factor

RGP:

radial growth phase

TPA:

12-0-tetradecanoyl phorbol-13-acetate

VGP:

vertical growth phase

References

  1. D. C. Bennet, K. Bridges, and I. A. McKay, Clonal separation of mature melanocytes from premelanocytes in a diploid human cell strain: Spontaneous and induced pigmentation of premelanocytes, J. Cell Sci. 77:167–183 (1985).

    Google Scholar 

  2. D. E. Elder and W. H. Clark, Jr., Developmental biology of malignant melanoma, in: “Pigment Cell”, Vol. 8, R. M. MacKie, ed., Karger, Basel (1987).

    Google Scholar 

  3. W. H. Clark, Jr., D. E. Elder, and M. Van Horn, The biologic forms of malignant melanoma, Hum. Pathol. 17:443–450 (1986).

    Article  PubMed  Google Scholar 

  4. W. H. Clark, Jr., D. E. Elder, D. Guerry, IV, M. N. Epstein, M. H. Greene, and M. Van Horn, A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma, Hum. Pathol. 15:1147–1165 (1984).

    Article  PubMed  Google Scholar 

  5. D. E. Elder, D. Guerry, IV, M. N. Epstein, L. Zehngebot, E. Lusk, M. Van Horn, and W. H. Clark, Jr. Invasive malignant melanomas lacking competence for metastasis, Am. J. Dermatopathol. 6:55–62 (1984).

    PubMed  Google Scholar 

  6. M. Herlyn, M. L. Mancianti, J. Jambrosic, J. B. Bolen, and H. Koprowski, Regulatory factors that determine growth and phenotype of normal human melanocytes, Exp. Cell. Res. 179:322–331 (1988).

    Article  PubMed  CAS  Google Scholar 

  7. M. Herlyn, W. H. Clark, U. Rodeck, M. L. Mancianti, J. Jambrosic, and H. Koprowski, Biology of tumor progression in human melanocytes, Lab. Invest. 56:461–474 (1987).

    PubMed  CAS  Google Scholar 

  8. M. Herlyn, U. Rodeck, M. L. Mancianti, F. M. Cardillo, A. Lang, A. H. Ross, J. Jambrosic, and H. Koprowski, Expression of melanoma-associated antigens in rapidly dividing human melanocytes in culture, Cancer Res. 47:3057–3061 (1987).

    PubMed  CAS  Google Scholar 

  9. M. Herlyn, D. Guerry, and H. Koprowski, Recombinant v-interferon induces changes in expression and shedding of antigens associated with normal human melanocytes, nevus cells, and primary and metastatic melanoma cells, J. Immunol. 134:4226–4230 (1985).

    PubMed  CAS  Google Scholar 

  10. J. Thurin, M. Thurin, M. Herlyn, D. E. Elder, Z. Steplewski, W. H. Clark, Jr., and H. Koprowski. GD2 ganglioside biosynthesis is a distinct biochemical event in human melanoma tumor progression. FEBS Lett., 208:17–22 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. M. Herlyn, J. Thurin, G. Balaban, L. J. Bennicelli, D. Herlyn, D. E. Elder, E. Bondi, D. Guerry, P. C. Nowell, W. H. Clark, and H. Koprowski, Characteristics of cultured human melanocytes isolated from different stages of tumor progression, Cancer Res. 45:5670–5676 (1985).

    PubMed  CAS  Google Scholar 

  12. M. L. Mancianti, M. Herlyn, D. Weil, J. Jambrosic, U. Rodeck, D. Becker, L. Diamond, W. H. Clark, and H. Koprowski, Growth and phenotypic characteristics of human nevus cells in culture. J. Invest. Dermatol. 90:134–141 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. G. Balaban, M. Herlyn, D. Guerry, R. Bartolo, H. Koprowski, W. H. Clark, and P. C. Nowell, Cytogenetics of human malignant melanoma and pre-malignant lesions, Cancer Genet. Cytogenet. 11:429–439 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. G. B. Balaban, M. Herlyn, W. H. Clark, Jr., and P. C. Nowell, Karyotypic evolution in human malignant melanoma, Cancer Genet. Cytogenet. 19:113–122 (1986).

    Article  PubMed  CAS  Google Scholar 

  15. M. Herlyn, W. H. Clark, Jr., M. J. Mastrangelo, D. Guerry, IV, D. E. Elder, D. LaRossa, R. Hamilton, E. Bondi, R. Tuthill, Z. Steplewski, and H. Koprowski, Specific immunoreactivity of hybridoma-secreted monoclonal anti-melanoma antibodies to cultured cells and freshly derived human cells, Cancer Res. 40:3602–3609 (1980).

    PubMed  CAS  Google Scholar 

  16. D. Guerry, IV, M. A. Alexander, D. E. Elder, and M. Herlyn, Interferon-Y regulates the T cell response to precursor nevi and biologically early melanoma, J. Immunol., 139:305–312 (1987).

    PubMed  CAS  Google Scholar 

  17. R. Kath, U. Rodeck, J. Jambrosic, and M. Herlyn, Growth factor independence in vitro of primary melanoma cells from advanced but not early or intermediate lesions (Submitted for publication).

    Google Scholar 

  18. U. Rodeck, M. Herlyn, H. D. Menssen, R. W. Furlanetto, and H. Koprowski, Metastatic but not primary melanoma cells grow in vitro independently from exogenous growth factors, Int. J. Cancer 40:687–690 (1987).

    Article  PubMed  CAS  Google Scholar 

  19. B. Westermark, A. Johnsson, Y. Paulsson, C. Betsholtz, C. H. Heldin, M. Herlyn, U. Rodeck, and H. Koprowski, Human melanoma cells lines of primary and metastatic origin express the genes encoding the chains of platelet-derived growth factor (PDGF) and produce a PDGF-like growth factor, Proc. Natl. Acad. Sci. USA 83:7197–7200 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. J. L. Bennicelli, J. Elias, J. Kern, and D. Guerry, IV, Production of interleukin 1 activity by cultured human melanoma cells, Cancer Res. (in press).

    Google Scholar 

  21. R. Halaban, B. S. Kwon, S. Ghosh, P. S. Delli Bovi, and A. Baird, bFGF as an autocrine growth factor for human melanomas, Oncogene Res. 3:177–186 (1988).

    PubMed  CAS  Google Scholar 

  22. D. Moscatelli, M. Presta, J. Joseph-Silverstein, and D. B. Rifkin, Both normal and tumor cells produce basic fibroblast growth factor, J. Cell. Physiol. 129:273–276 (1986).

    Article  PubMed  CAS  Google Scholar 

  23. A. Richmond, D. H. Lawson, D. W. Nixon, and R. K. Chawla, Characterization of autostimulatory and transforming growth factors from human melanoma cells, Cancer Res. 45:6390–6394 (1985).

    PubMed  CAS  Google Scholar 

  24. M. Eisinger, O. Marko, S.-I. Ogata, and L. J. Old, Growth regulation of human melanocytes: Mitogenic factors in extracts of melanoma, astrocytoma, and fibroblast cell lines, Science 229:984–986 (1985).

    Article  PubMed  CAS  Google Scholar 

  25. A. J. Linnenbach, K. Huebner, E. Premkumar Reddy, M. Herlyn, A. H. Parmiter, P. C. Nowell, and H. Koprowski, Structural alteration in the MYB protooncogene and deletion within the gene encoding α-type protein kinase C in human melanoma cell lines, Proc. Natl. Acad. Sci. USA 85:74–78 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Valyi-Nagy, I., Rodeck, U., Kath, R., Mancianti, M.L., Clark, W.H., Herlyn, M. (1991). The Human Melanocyte System as a Model for Studies on Tumor Progression. In: Sudilovsky, O., Pitot, H.C., Liotta, L.A. (eds) Boundaries between Promotion and Progression during Carcinogenesis. Basic Life Sciences, vol 57. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5994-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5994-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5996-8

  • Online ISBN: 978-1-4684-5994-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics