Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 211))

Abstract

As the source of energy and as an environmental factor, light has played a crucial role in selection and adaptation processes in chemical and organismic evolution. Organisms ranging from prokaryotic bacteria to eukaryotic mammals directly absorb light of varying wavelengths for energy supply, for survival and/or light sensory signal transduction. Efficient absorption of a specific wavelength of light by the photoreceptor/light sensor molecules triggers a variety of photobiological responses in different organisms. Figure 1 is an attempt to demonstrate the diversity of photosensor molecules and their corresponding light absorbance characteristics, particularly specific wavelength light for absorbance maximum. Some organisms such as the firefly are capable of converting chemical energy to light energy (bioluminescence). This lighting phenomenon is also included in what we might call the “photobiolgoical spectrum” (Fig. 1). Figure 2 illustrates the simplest route for light absorption by a photosensor molecule and for the resulting excitation of the molecule which initiates a sensory transduction chain in photobiological responses of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aubailly, M., and Santus, R., 1986, Oxidations photosensitized by pterins and diaminopterins, in: “Chemistry and Biology of Pterines,” R. A. Cooper, and V. M. Whitehead, eds., de Gruyter, Berlin, pp. 99–102.

    Google Scholar 

  • Boucher, F., and Gingras, G., 1984, Spectral evidence for photo-induced isomerization of carotenoids in bacterial photoreaction center, Photochem. Photobiol.,40:277.

    Article  CAS  Google Scholar 

  • Boucher, F., van der Rest, M., and Gingras, G., 1977, Structure and function of carotenoids in the photoreaction center from Rhodospirillum rubrum, Biochim. Biophys. Acta, 461:339.

    Article  PubMed  CAS  Google Scholar 

  • Braslavsky, S. E., Holzwarth, A. R., Wendler, J., Ruzsicska, B. P., and Schaffner, K., 1984, Picosecond time-resolved and stationary fluorescence of oat photochrome highly enriched in the native 124 kdalton protein, Biochim. Biophys. Acta, 191:265.

    Google Scholar 

  • Braslavsky, S. E., Ruzsicska, B. P., and Schaffner, K., 1985, The kinetics of the early stages of the phyto-chrome phototransformation Pr Pfr. A comparative study of small (60 kdalton) and native (124 kdalton) phytochromes from oat, Photochem. Photobiol., 41:681.

    Article  Google Scholar 

  • Chae, Q., Song, P. S., Johansen, J. E., and Liaaen-Jensen, S., 1977, Linear dichroic spectra of cross-conjugated carotenals and configurations of in-chain substituted carotenoids, J.Am. Chem. Soc., 99:5609.

    Article  PubMed  CAS  Google Scholar 

  • Chai, Y. G., Song, P. S., Cordonnier, M.-M., and Pratt, L. H., 1987, Biochemistry, 26:4947.

    Article  PubMed  CAS  Google Scholar 

  • Chahidi, C., Aubailly, A., Momzikoff, A., Bazin, M., and Santus, R., 1981, Photophysical and photosensitizing properties of 2-amino-4-pteridone: a natural pigment, Photochem. Photobiol., 33:641.

    Article  CAS  Google Scholar 

  • Choi, J. D., Fugate, R. D., and Song, P. S., 1980, Nanosecond time-resolved fluorescence of phototautome-ric lumichrome, J.Am. Chem. Soc., 102:5293.

    Article  CAS  Google Scholar 

  • Choi, J. K., Kim, I. S., Kwon, T. I., Parker, W., and Song, P. S., 1990, Spectral perturbations and oligo-mer/monomer formation in 124-kilodaltonylvena phytochrome, Biochemistry, 29:6883.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, R. K., 1965, “Molecular Physics in Photosynthesis,” Blaisdell, New York, p. 196.

    Google Scholar 

  • Cordonnier, M.-M., Greppin, H., and Pratt, L. H., 1985, Monoclonal antibodies with differing affinities to the red absorbing and farred absorbing forms of phytochrome, Biochemistry, 24:3246.

    Article  CAS  Google Scholar 

  • Davidson, E., and Cogdell, R. J., 1981, Reconstitution of carotenoids into the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas spheroides R26, Biochim. Biophys. Acta, 635:295.

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer, L, Epp, O., Miki, K., Huber, R., and Michel, H., 1986, Structure of the protein subunits in the photosynthetic reaction center of Rhodopseudomonas viridis at 3Ă… resolution, Nature, 318: 618.

    Article  CAS  Google Scholar 

  • Dirks, G., Moore, A. L., Moore, T. A., and Gust, D., 1980, Light absorption and energy transfer in polyene-porphyrin esters, Photochem. Photobiol., 32:277.

    Article  CAS  Google Scholar 

  • Ekelund, N. G. A., Sundqvist, C, Quail, P. H., and Vierstra, R. D., 1985, Chromophore rotation in 124-kilodalton Avena phytochrome as measured by light-induced changes in linear dichroism, Photochem. Photobiol., 41:2212.

    Article  Google Scholar 

  • Farrens, D. L., Holt, R. E., Rospendowski, B. N., Song, P. S., and Cotton, T. M., 1989, Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 2. Phytochrome and phycocyanin chromophores, J. Am. Chem. Soc., 111:9162.

    Article  CAS  Google Scholar 

  • Fodor, S. P. A., Lagarias, J. C, and Mathies, R., 1988, Resonance Raman spectra of the Pr-form of phytochrome, Photochem. Photobiol., 48:129.

    Article  PubMed  CAS  Google Scholar 

  • Forward, Jr., R. B., 1976, Light and diurnal vertical migration: Photobehavior and photophysiology of plankton, Photochem. Photobiol Rev., 1:157, and references by the author therein.

    Google Scholar 

  • Foster, K., Saranak, J., Derguini, F., Zarilli, G., Johnson, R., Okabe, M., and Nakanishi, K., 1989, Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal, Biochemistry, 28:819,

    Article  PubMed  CAS  Google Scholar 

  • Furuya, M., ed., 1987, “Phytochrome and Photoregulation in Plants,” Academic Press, Tokyo and New York, pp. 354.

    Google Scholar 

  • Galland, P., Keiner, P., Dornemann, D., Senger, H., Brodhun, B., and Hader, D.-P., 1990, Pterin- and flavin-like fluorescence associated with isolated flagella of Euglena gracilis, Photochem. Photobiol., 51:675.

    CAS  Google Scholar 

  • Galland, P., and Senger, H., 1988, The role of pterins in the photoreception and metabolism of plants, Photochem. Photobiol, 48:811.

    Article  CAS  Google Scholar 

  • Grimm, R., Eckerskorn, Ch., Lottspeich, F., Zenger, C, and Riidiger, W., 1988, Sequence analysis of proteolytic fragments of 124-kilodalton phytochrome from etiolated Avena sativa L.: Conclusions on the conformation of the native protein, Planta, 174:396.

    Article  CAS  Google Scholar 

  • Hahn, T. R., Song, P. S., Quail, P. H., and Vierstra, R. D., 1984, Tetranitromethane oxidation of phytochrome chromophore as a function of spectral form and molecular weight, Plant Physiol., 74:755.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, H., and Koyama, Y., 1988, Time-resolved resonance Raman spectroscopy of triplet B-earotene produced from all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers and high-pressure liquid chromatography analyses of photoisomerization via the triplet state, J. Phys. Chem. 92:2101.

    Article  CAS  Google Scholar 

  • Hashimoto, H., and Koyama, Y., 1989, The C=C stretching Raman lines of β-carotene isomers in the S1 state as detected by pump-probe resonance Raman spectroscopy, Chem. Phys. Lett., 154:321.

    Article  CAS  Google Scholar 

  • Hayashi, H., Kolaczkowski, S. V., Noguchi, T., Blanchard, D., and Atkinson, G. H., 1990, Picosecond time-resolved resonance Raman scattering and absorbance changes from carotenoids in light-harvesting systems of photosynthetic bacterium Chromatium vinosum, J. Am. Chem. Soc, 112:4664.

    Article  CAS  Google Scholar 

  • Heelis, P. F., Okamura, T., and Sancar, A., 1990, Excited-state properties of Escherichia coli DNA pho-tolyase in the picosecond to millisecond time scale, Biochemistry, 29:5694.

    Article  PubMed  CAS  Google Scholar 

  • Heihoff, K., Braslavsky, S. E., and Schaffner, K., 1987, Study of 124-kilodalton oat phytochrome photocon-versions in vitro with laser-induced optoacoustic spectroscopy, Biochemistry, 26:1422.

    Article  CAS  Google Scholar 

  • Hemmerich, P., and Haas, W., 1975, Recent developments in the study of fully reduced flavin, in: “Reactivity of Flavins,” K. Yagi, ed., University Park Press, Baltimore, MD. pp. 1.

    Google Scholar 

  • Holt, R. E., Farrens, D. L., Song, P. S., and Cotton, T. M., 1989, Surface-enhanced resonance Raman scattering spectroscopy applied to phytochrome and its model compounds. 1. Biliverdin photoiso-mers, J. Am. Chem. Soc., 111:9156.

    Article  CAS  Google Scholar 

  • Johnson, J. C, Hainlive, B. E., and Rajagopalan, K. V., 1981, Characterization of the molybdenum cofactor of sulfite oxidase, xanthine oxidase and nitrate reductase. Identification of a pteridine as a structural component, J. Biol. Chem., 255:1783.

    Google Scholar 

  • Jones, A. M., and Erickson, H. P., 1989, Domain structure of phytochrome from Avena sativa visualized by electron microscopy, Photochem. Photobiol., 49:479.

    Article  PubMed  CAS  Google Scholar 

  • Jones, A. M., and Quail, P. H., 1986, Quaternary structure of 124-kilodalton phytochrome from Avena sativa, Biochemistry, 25:2987.

    Article  CAS  Google Scholar 

  • Jones, A. M., and Quail, P. H., 1989, Peptide fragments from the amino-terminal domain involved in pro-tein-chromophore interactions, Planta, 178:147.

    Article  CAS  Google Scholar 

  • Jorns, M. S., Wang, B., and Jordan, S. P., 1987, DNA repair catalyzed by Escherichia coli DNA photolyase containing only reduced flavin: Elimination of the enzyme’s second chromophore by reduction with sodium borohydride, Biochemistry, 26:6810.

    Article  PubMed  CAS  Google Scholar 

  • Jorns, M. S., Wang, B., Jordan, S. P., and Chanderkar, L. P., 1990, Chromophore function and interaction in Escherichia coli DNA photolyase: Reconstitution of the apoenzyme with pterin and/or flavin derivatives, Biochemistry, 29:552.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, Y., Takatsuka, L, Kanani, M., Tomimoto, K., Kito, M., Shimamura, T., Yamashita, J., Saiki, K., and Tsukida, K., 1990, Configurations of carotenoids in the reaction center and the light-harvesting complex of Rhodospirillum rubrum. Natural selection of carotenoid configurations by pigment protein complexes, Photochem. Photobiol., 51:119.

    Article  CAS  Google Scholar 

  • Koka, P., and Song, P. S., 1977, The chromophore topography and binding environment of peridinin- chlorophyll a- protein complexes from marine dinoflagellate algae, Biochim. Biophys. Acta, 495:220.

    PubMed  CAS  Google Scholar 

  • Lagarias, J. C, and Mercurio, F. M., 1985, Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-Kda Avena phytochrome in vivo, J. Biol. Chem., 260:2415.

    PubMed  CAS  Google Scholar 

  • Lagarias, J. C, and Rapoport, H., 1980, Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore, J. Am. Chem. Soc., 102:4821.

    Article  CAS  Google Scholar 

  • Ledbetter, J. W., and Tyner, S., 1990, Photostimulated reaction of pterin, biopterin and folic acid with B-NADPH, Photochem. Photobiol., 51:7s.

    Google Scholar 

  • Lee, J., Carreira, L. A., Gast, R., Irwin, R. M., Koka, P., Small, E. D., and Visser, A. J. W. G., 1981, Properties of a lumazine protein from the bioluminescent bacterium Photobacterium phosphoreum, in: “Bioluminescence and Chemiluminescence,” M. A. DeLuca, and W.D. McElroy, eds., Academic Press, New York. pp. 103.

    Google Scholar 

  • Lipson, E. D., and Horwitz, B. A., 1990, Photosensory reception and transduction, in: “Sensory Receptors and Signal Transduction,” J. Spudich, ed., in: Modern Cell Biology, vol. 7 (Series Editor B. Satir) Academic Press, New York, In press.

    Google Scholar 

  • Moore, A. L., Dirks, G., Gust, D., and Moore, T. A., 1980, Energy transfer from carotenoid polyenes to porphyrins: a light-harvesting antenna, Photochem. Photobiol., 32:691.

    Article  CAS  Google Scholar 

  • Nechushtai, R., Thornber, J. P., Patterson, L. K., Fessenden, R. W., and Levanon, H., 1988, Photosensitization of triplet carotenoid in photosynthetic light-harvesting complex of photosystem II, J.Phys. Chem., 92:1165.

    Article  CAS  Google Scholar 

  • Norris, J. R., and Schiffer, M., 1990, Photosynthetic reaction centers in bacteria. Chem. Eng. News, July 30, p. 22.

    Article  Google Scholar 

  • Parker, W., Romanowski, M., and Song, P. S., 1990, Conformation and its functional implications in phytochrome, in: “Phytochrome Properties and Biological Action,” B. Thomas, ed., Springer, Berlin, in press.

    Google Scholar 

  • Parker, W., and Song, P. S., 1990, Location of helical regions in tetrapyrrole containing proteins by a helical hydrophobic moment analysis: Applications to phytochrome, J. Biol. Chem, 265:17568.

    PubMed  CAS  Google Scholar 

  • Payne, G., Wills, M., Walsh, C., and Sancar, A., 1990, Reconstitution of Escherichia coli photolyase with flavins and flavin analogs, Biochemistry, 29:5706.

    Article  PubMed  CAS  Google Scholar 

  • Romanowski, M., and Song, P. S., 1990, Structural domains of phytochrome deduced from homologies in amino acid sequences, Biophys. J., submitted.

    Google Scholar 

  • Rospendowski, B. N., Farrens, D. L., Cotton, T. M., and Song, P. S., 1989, Surface-enhanced resonance Raman scattering (SERRS) as a probe of the structural differences between the Pr and Pfr forms of phytochrome, FEBS Lett., 258:1.

    Article  PubMed  CAS  Google Scholar 

  • RĂĽdiger, W., ThĂĽmmler, F., Cmiel, E., and Schneider, S., 1983, Chromophore structure of the physiologically active form (Pfr) of phytochrome, Proc. Natl. Acad. Sci. USA, 80:6244.

    Article  PubMed  Google Scholar 

  • Sancar, G. B., Jorns, M. S., Payne, G., Fluke, D. J., Rupert, C. S., and Sancar, A., 1987, Action mechanism of Escherichia coli DNA photolyase, J.Biol. Chem., 262:492.

    PubMed  CAS  Google Scholar 

  • Song, P. S., 1969, Theoretical considerations of the electronic spectra of methyl flavins, Int. J. Quantum Biol., 3:303.

    Article  CAS  Google Scholar 

  • Song, P. S., 1983a, The electronic spectroscopy of photoreceptors (other than rhodopsin), Photochem. Photobiol. Rev., 1:11.

    Google Scholar 

  • Song, P. S., 1983b, Protozoan and related photoreceptors: Molecular aspects, Annu. Rev. Biophys. Bioengin., 12:35.

    Article  CAS  Google Scholar 

  • Song, P. S., 1985, Primary molecular events in aneural cell photoreceptors, in: “Sensory Perception and Transduction in Aneural Organisms,” G. Colombetti, F. Lenci, and P. S. Song, eds., NATO ASI Series A, Life Sci. Vol. 89, Plenum, New York. pp. 47.

    Chapter  Google Scholar 

  • Song, P. S., 1987, Possible primary photoreceptors, in: “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” H. Senger, ed., vol. II, CRC Press, Boca Raton, FL. pp. 3.

    Google Scholar 

  • Song, P. S., 1988, The molecular topography of phytochrome: Chromophore and apoprotein, J.Photochem. Photobiol. B: Biol., 2:43.

    Article  CAS  Google Scholar 

  • Song, P. S., and Chae, Q., 1979, The transformation of phytochrome to its physiologically active form, Photochem. Photobiol., 30:117.

    Article  CAS  Google Scholar 

  • Song, P. S., Koka, P., Prezelin, B. B., and Haxo, F. T., 1976, Molecular topology of the photosynthetic light-harvesting complex, peridinin-chlorophyll a-protein complex from marine dinoflagellates, Biochemistry, 15:4422.

    Article  PubMed  CAS  Google Scholar 

  • Song, P. S., and Moore, T. A., 1968, Mechanism of the photodephosphorylation of menadiol diphosphate. A model for bioquantum conversion, J. Am. Chem. Soc, 90:6507.

    Article  CAS  Google Scholar 

  • Song, P. S., and Poff, K. L., 1989, Photomovement. in: “The Science of Photobiology” 2nd ed., K. C. Smith, ed., Plenum, New York. pp. 305–346.

    Chapter  Google Scholar 

  • Song, P. S., Singh, B. R., Tamai, N., Yamazaki, T., Yamazaki, I., Tokutomi, S., and Furuya, M., 1989, Primary photoprocesses of phytochrome. Picosecond fluorescence kinetics of oat and pea phytochromes, Biochemistry, 28:3265.

    Article  PubMed  CAS  Google Scholar 

  • Song, P. S., Sun, M., Koziolowa, A., and Koziol, J., 1974, Phototautomerism of lumichromes and alloxazines,J. Am. Chem. Soc, 96:4319.

    Article  CAS  Google Scholar 

  • Song, P. S., and Suzuki, S., 1990, Properties and evolution of photoreceptor, in: “Photoreceptor Evolution and Function,” M. G. Holmes, ed., Academic Press, London, in press.

    Google Scholar 

  • Song, P. S., Tamai, N., and Yamazaki, I., 1986, Viscosity dependence of primary photoprocesses of 124 kDalton phytochrome, Biophys. J., 49:645.

    Article  PubMed  CAS  Google Scholar 

  • Sun, M., and Song, P. S., 1973, Excited states and reactivity of 5-deazaflavine. Comparative studies with flavine, Biochemistry, 12:4663.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, B., ed., 1990, “Phytochrome Properties and Biological Action,” NATO ASI Cell Biology Series, Springer, Berlin, in press.

    Google Scholar 

  • Tokutomi, S., Nakasako, M., Sakai, J., Kataoka, M., Yamamoto, K. T., Wada, M., and Furuya, M., 1989, A model for the dimeric molecular structure of phytochrome based on small angle X-ray scattering, FEBS Lett., 247:139.

    Article  CAS  Google Scholar 

  • Tomizawa, K., Nagatani, A., and Furuya, M., 1990, Phytochrome genes: Studies using the tools of molecular biology and photomorphogenesis mutants, Photochem. Photobiol., 52:265.

    Article  PubMed  CAS  Google Scholar 

  • Trautman, J. K., Shreve, A. P., Owens, T. G., and Albrecht, A. C, 1990, Femtosecond dynamics of carote-noid-to-chlorophyll energy transfer in thylakoid membrane preparations from Phaeodactylum tricor-nutum and Nannochloropsis sp, Chem. Phys. Lett., 166:369.

    Article  CAS  Google Scholar 

  • VanDerWoode, W. J., 1985, A dimeric mechanism for the action of phytochrome: Evidence from photo-thermal interactions in lettuce seed germination, Photochem. Photobiol., 42:655.

    Article  Google Scholar 

  • Vierstra, R. D., and Quail, P. H., 1983, Purification and initial characterization of 124-kilodalton phytochrome from Avena, Biochemistry, 22:2498.

    Article  CAS  Google Scholar 

  • Visser, A. J. W. G., Ghisla, S., Massey, V., Muller, F., and Veeger, C, 1979, Fluorescence properties of reduced flavins and flavoproteins, Eur. J. Biochem., 101:13.

    Article  PubMed  CAS  Google Scholar 

  • Wada, M., and Kadota, A., 1987, Photo- and polarotropism in fern protonemata, in: “Phytochrome and Photoregulation in Plants,” M. Furuya, Academic Press, Tokyo and New York. pp. 239–248.

    Google Scholar 

  • Walsh, C., 1986, Naturally occurring 5-deazaflavin coenzymes: Biological redox roles, Acc. Chem. Res., 19:216.

    Article  CAS  Google Scholar 

  • Wasielewski, M., and Kispert, L. D., 1986, Direct measurement of the lowest excited singlet state lifetime of all-trans-β-carotene and related carotenoids, Chem. Phys. Lett., 128:238.

    Article  CAS  Google Scholar 

  • Wong, Y. S., Cheng, H. C., Walsch, D. A., and Lagarias, J. C., 1986, Phosphorylation of Avena phytochrome in vitro as a probe for light-induced conformational changes, J.Biol. Chem., 261:12089.

    Google Scholar 

  • Yagi, K., Ohishi, N., Nishimoto, K., Choi, J. D., and Song, P. S., 1980, Effects of hydrogen bonding on the electronic spectra and reactivity of flavins, Biochemistry, 19:1553.

    Article  PubMed  CAS  Google Scholar 

  • Yan, B., Takahashi, T., Johnson, R., Derguini, F., and Nakanishi, K., 1990, All-trans/13-cis isomerization of retinal is required for phototaxis signaling by sensory rhodopsin in Halobacterium halobium, Biophys. J., 57:807.

    Article  PubMed  CAS  Google Scholar 

  • Yang, S. F., Ku, S. H., and Pratt, H. K., 1967, Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide, J.Biol. Chem., 242:521A.

    Google Scholar 

  • Zechmeister, L., 1962, “Cis-Trans Isomeric Carotenoids, Vitamins A and Arylpolyenes,” Academic Press, Vienna, pp. 80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Song, PS., Suzuki, S., Kim, ID., Kim, J.H. (1991). Molecular Properties of Biological Light Sensors. In: Lenci, F., Ghetti, F., Colombetti, G., Häder, DP., Song, PS. (eds) Biophysics of Photoreceptors and Photomovements in Microorganisms. NATO ASI Series, vol 211. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5988-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5988-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5990-6

  • Online ISBN: 978-1-4684-5988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics