Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 211))

Abstract

Action spectroscopy — the measurement, as a function of wavelength, of the sensitivity of a particular biological response or effect — is a standard approach towards identifying receptor pigment(s) for photobiological phenomena (Jagger, 1967; Shropshire, 1972; Hartmann, 1983; Schäfer et al., 1983; Schafer and Fukshansky, 1984; Galland, 1987). Comparison of an action spectrum with absorption spectra of known pigments often reveals the identity of the pigment, or class of pigments, involved. Some action spectra simply show the magnitude of a response as a function of wavelength, under conditions where a standard photon fluence (or fluence rate) is applied in all measurements. The difficulty with this expedient approach is that the response may well depend nonlinearly on the fluence. Such nonlinearity can introduce severe distortion into an action spectrum obtained in this way. The preferred method, instead, is to measure a separate fluence-response curve for each wavelength of interest, and then to determine the photon fluence needed to elicit a standard response level, for example 50% of maximum response. The reciprocal of the requisite photon fluence represents the sensitivity of the system, and is used as the ordinate of the action spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez, M. I., Eslava, A. P., and Lipson, E. D., 1989, Phototropism mutants of Phycomyces blakesleeanus isolated at low light intensity, Exp. Mycol., 13:38.

    Article  Google Scholar 

  • Baskin, T. I., and Iino, M., 1987, An action spectrum in the blue and ultraviolet for phototropism in alfalfa, Photochem. Photobiol., 46:127.

    Article  Google Scholar 

  • Bejarano, E. R., Avalos, J., Lipson, E. D., and Cerdá-Olmedo, E., 1991, Photoinduced accumulation of carotene in Phycomyces, Planta, in press.

    Google Scholar 

  • Bergman, K., Eslava, A. P., and Cerdá-Olmedo, E., 1973, Mutants of Phycomyces with abnormal phototropism, Mol. Gen. Genet., 123:1.

    Article  PubMed  CAS  Google Scholar 

  • Bevington, P. R., 1969, “Data Reduction and Error Analysis for the Physical Sciences,” McGraw-Hill, New York.

    Google Scholar 

  • Corrochano, L. M., Galland, P., Lipson, E. D., and Cerdá-Olmedoi, E., 1988, Photomorphogenesis in Phycomyces: fluence-response curves and action spectra, Planta, 174:315.

    Article  Google Scholar 

  • Ensminger, P. A., Chen, X., and Lipson, E. D., 1990, Action spectra for photogravitropism of Phycomyces wild type and three behavioral mutants (L150, L152, and L154), Photochem. Photobiol., 51:681.

    PubMed  CAS  Google Scholar 

  • Ensminger, P. A., and Lipson, E. D., 1991, Action spectra of the light-growth response in three behavioral mutants of Phycomyces, Planta, in press.

    Google Scholar 

  • Ensminger, P. A., Schaefer, H. R., and Lipson, E. D., 1991, Action spectra of the light-growth response of Phycomyces, Planta, in press.

    Google Scholar 

  • Foster, K., Saranak, J., Derguini, F., Jayathirtha, V., Zarrilli, G., Okabe, M., Fang, J.-M., Shimizu, N., and Nakanishi, K., 1988a, Rhodopsin activation: a novel view suggested by in vivo Chlamydomonas experiments, J. Am. Chem. Soc., 110:6588.

    Article  CAS  Google Scholar 

  • Foster, K., Saranak, J., Derguini, F., Zarilli, G., Johnson, R., Okabe, M., and Nakanishi, K., 1989, Activation of Chlamydomonas rhodopsin in vivo does not require isomerization of retinal, Biochemistry, 28:819.

    Article  PubMed  CAS  Google Scholar 

  • Foster, K. W., Saranak, J., and Dowben, P. A., 1990, Spectral sensitivity, structure, and activation of eukaryotic rhodopsins: activation spectroscopy of rhodopsin analogs in Chlamydomonas, J. Photochem. Photobiol B:Biol., in press.

    Google Scholar 

  • Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K., 1984, A rhodopsin is the functional protoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas, Nature, 311:756.

    CAS  Google Scholar 

  • Foster, K., Saranak, J., and Zarrilli, G., 1988b, Autoregulation of rhodopsin in Chlamydomonas reinhardtii, Proc. Natl. Acad. Sci. USA, 85:6379.

    Article  PubMed  CAS  Google Scholar 

  • Foster, K. W., and Smyth, R. D., 1980, Light antennas in phototactic algae, Microbiol Rev., 44:572.

    PubMed  CAS  Google Scholar 

  • Galland, P., 1987, Action spectroscopy, in: “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” Senger, H., ed., CRC Press, Boca Raton, Florida, p. 37.

    Google Scholar 

  • Galland, P., and Lipson, E. D., 1985a, Action spectra for phototropic balance in Phycomyces blakesleeanus: dependence on reference wavelength and intensity range, Photochem. Photobiol., 41:323.

    Article  PubMed  CAS  Google Scholar 

  • Galland, P., and Lipson, E. D., 1985b, Modified action spectra of photogeotropic equilibrium in Phycomyces blakesleeanus mutants with defects in genes madA, madB, madC, and madH, Photochem. Photobiol., 41:331.

    Article  PubMed  CAS  Google Scholar 

  • Galland, P., and Lipson, E. D., 1987, Blue-light reception in Phycomyces phototropism: evidence for two photosystems operating in low- and high-intensity ranges, Proc. Natl. Acad Sci. USA, 84:104.

    Article  PubMed  CAS  Google Scholar 

  • Galland, P., Orejas, M., and Lipson, E. D., 1989, Light-controlled adaptation kinetics in Phycomyces: evidence for a novel yellow-light absorbing pigment, Photochem. Photobiol., 49:493.

    Article  PubMed  CAS  Google Scholar 

  • Galland, P., and Senger, H., 1988a, The role of flavins as photoreceptors, J. Photochem. PhotobioL BiBiol., 1:277.

    Article  CAS  Google Scholar 

  • Galland, P., and Senger, H., 1988b, The role of pterins in the photoreception and metabolism of plants, Photochem. Photobiol., 48:811.

    Article  CAS  Google Scholar 

  • Grossweiner, L. I., 1989, Photophysics, in: “The Science of Photobiology,” Smith, K. C., ed., Plenum Press, New York, p. 1.

    Chapter  Google Scholar 

  • Hamilton, W. C., 1964, “Statistics in Physical Science,” Ronald Press, New York.

    Google Scholar 

  • Hartmann, K. M., 1983, Action spectroscopy, in: “Biophysics,” Hoppe, W., Lohmann, W., Markl, H., and Ziegler, H., eds., Springer-Verlag, Berlin, Heidelberg, New York, p. 115.

    Google Scholar 

  • Jagger, J., 1967, “Introduction to Research in Ultraviolet Photobiology,” Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Lipson, E. D., and Presti, D., 1980, Graphical estimation of cross sections from fluence-response data, Photochem. Photobiol., 32:383.

    Article  CAS  Google Scholar 

  • Lipson, E. D., and Terasaka, D. T., 1981, Photogeotropism in Phycomyces double mutants, Exp. Mycol., 5:101.

    Article  Google Scholar 

  • Naka, K. I., and Rushton, W. A. H., 1966, S-potentials from colour units in the retina of fish (Cyprinidae), J. Physiol., 185:536.

    PubMed  CAS  Google Scholar 

  • Nultsch, W., Throm, G., and von Rimscha, I., 1971, Phototaktische Untersuchungen an Chlamydomonas reinhardtii Dangeard in homokontinuierlicher Kultur, Arch. Microbiol., 90:47.

    Google Scholar 

  • Ootaki, T., Fischer, E. P., and Lockhart, P., 1974, Complementation between mutants of Phycomyces with abnormal phototropism, Mol. Gen. Genet., 131:233.

    Article  Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1985, “Numerical Recipes,” Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Presti, D. E., and Galland, P., 1987, Photoreceptor biology of Phycomyces, in: “Phycomyces,” Cerdá-Olmedo, E., and Lipson, E. D., eds., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, p. 93.

    Google Scholar 

  • Presti, D., Hsu, W. J., and Delbrück, M., 1977, Phototropism in Phycomyces mutants lacking ß-carotene, Photochem. Photobiol., 26:403.

    Article  CAS  Google Scholar 

  • Schafer, E., and Fukshansky, L., 1984, Action spectroscopy, in: “Techniques in Photomorphogenesis,” Smith, H., and Holmes, M. G., eds., Academic Press, London, p. 109.

    Google Scholar 

  • Schäfer, E., Fukshansky, L., and Shropshire, W., Jr., 1983, Action spectroscopy of photoreversible pigment systems, in: “Encyclopedia of Plant Physiology”, New Series, Vol. 16 A,B, “Photomorphogenesis,” Shropshire, W., Jr., and Mohr, H., eds., Springer-Verlag, Berlin, Heidelberg, New York, p. 39.

    Google Scholar 

  • Schmid, R., Idziak, E.-M., and Tünnermann, M., 1987, Action spectrum for the blue-light-dependent morphogenesis of hair whorls in Acetabularia mediterranea,Planta, 171:96.

    Article  Google Scholar 

  • Senger, H., ed., 1980, “The Blue Light Syndrome,” Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Senger, H., ed., 1984, “Blue Light Effects in Biological Systems,” Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Senger, H., ed., 1987, “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” Vol. I and II, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Shropshire, W., Jr., 1972, Action spectroscopy, in: “Phytochrome,” Mitrakos, K., and Shropshire, W., Jr., eds., Academic Press, London, p. 162.

    Google Scholar 

  • Smyth, R. D., Saranak, J., and Foster, K. W., 1988, Algal visual systems and their photoreceptor pigments, Prog. Phycol. Res., 6:225.

    Google Scholar 

  • Stoeckenius, W., Wolff, E., and Hess, B., 1988, A rapid population method for action spectra applied to Halobacterium halobium, J. Bact., 170:2790.

    PubMed  CAS  Google Scholar 

  • Trad, C. H., and Lipson, E. D., 1987, Biphasic fluence-response curves and derived action spectra for light-induced absorbance changes in Phycomyces mycelium, J.Photochem. Photobiol. B:Biol., 1:169.

    Article  Google Scholar 

  • Williams, T. P., and Gale, J. G., 1978, “Compression” of retinal responsivity: V-log I functions and increment thresholds, in: “Visual Psychophysics and Physiology,” Armington, J. C., ed., Academic Press, New York, p. 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Lipson, E.D. (1991). Action Spectroscopy. In: Lenci, F., Ghetti, F., Colombetti, G., Häder, DP., Song, PS. (eds) Biophysics of Photoreceptors and Photomovements in Microorganisms. NATO ASI Series, vol 211. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5988-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5988-3_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5990-6

  • Online ISBN: 978-1-4684-5988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics