Skip to main content

On the Trail of the Photoreceptor for Phototropism in Higher Plants

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 211))

Abstract

Much of the photomorphogenesis of multicellular green plants is mediated by red, far red-reversible pigment phytochrome (Hendricks and Van der Woude, 1983) By contrast, only a few selected microorganisms respond to red light signals. However, both plants and microorganisms exhibit a wide range of responses to blue and ultraviolet light (Gressel and Rau, 1983; Senger, 1987), almost certainly mediated several different blue light photoreceptors (Briggs and lino, 1983; Gressel and Rau 1983; Iino, 1988; Palit et al, 1989). A class of photoreceptors showing action spectra that one would expect for flavoproteins are found both in higher plants and fungi (Briggs and Iino, 1983). This class is frequently given the general name “cryptochrome” We are presently working with a higher plant photoreceptor that we suspect to be in this class. We will describe our current studies on this pigment system here in the hopes that at least some of what we have found may be helpful in elucidating responses blue light in microorganisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baskin, T. I., 1986a, “Phototropism: Light and Growth,” Ph. D. Thesis, Stanford University.

    Google Scholar 

  • Baskin, T. I., 1986b, Redistribution of growth during phototropism and nutation in the pea epicotyl, Planta, 169:406.

    Article  Google Scholar 

  • Boyer, P. D., and Krebs, E. G., eds., 1986, “The Enzymes, Ed. 3, XW, Control by Phosphorylation,” Academic Press, Orlando, Florida.

    Google Scholar 

  • Briggs, W. R., and Iino, M., 1983, Blue light-absorbing photoreceptors in plants, Phil. Trans, Roy. Soc. B Biol. Sci., 303:347.

    Article  CAS  Google Scholar 

  • Briggs, W. R., and Short, T. W., 1991, The transduction of light signals in plants, in: “Phytochrome Properties and Biological Actions,” Thomas, B., and Johnson, C., eds., Springer-Verlag, Berlin, in press.

    Google Scholar 

  • Budde, R. J. A., and Chollet, R., 1988, Regulation of enzyme activity in plants by reversible phosphorylation, Physiol. Plantarum, 72:435.

    Article  CAS  Google Scholar 

  • Chollet, R., 1990, Light/dark modulation of C4-photosynthesis enzymes by regulatory phosphorylation, in: “Current Topics in Plant Biochemistry and Physiology 9,” Randall, D. D., and Blevins, D. G., eds., University of Missouri, Columbia, Missouri, pp. 232.

    Google Scholar 

  • Cooper, J. A., Sefton, B. M., and Hunter, T., 1983, Detection and quantification of phosphotyrosine in proteins, Methods in Enzymology, 99:387.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, S., Short, T. W., Ray, P. M., Pratt, L. H., and Briggs, W. R., 1988, Light-mediated changes in two proteins found associated with plasma membrane fractions from pea stem sections, Proc. Natl. Acad. Sci. USA., 85:8003.

    Article  PubMed  CAS  Google Scholar 

  • Galston, A. W., 1959, Phototropism of stems, roots, & coleoptiles, in: “Handbuch der Pflanzenphysiologie,” Ruhland, W., ed., Vol. XVII1, Springer-Verlag, Berlin, p. 492.

    Google Scholar 

  • Gressel, J., and Rau, W., 1983, Photocontrol of fungal development, in: “Encyclopedia of Plant Physiology, New Series, 16B,” Shropshire, W. Jr., and Mohr, H., eds., Springer-Verlag, Berlin, p. 603.

    Google Scholar 

  • Guilfoyle, T. J., Dietrich, M. A., Prenger, J. P., and Hagen, G., 1990, Phosphorylation/dephosphorylation of the carboxyl terminal domain of the largest subunit of RNA polymerase II, in: “Current Topics in Plant Biochemistry and Physiology 9,” Randall, D. D., and Blevins, D. G., eds., University of Missouri, Columbia, Missouri, p. 299.

    Google Scholar 

  • Heelis, P. F., Parsons, B. J., Phillips, G. O., and McKellar, J. F., 1978, A laser flash photolysis study of the nature of flavin mononucleotide triplet states and the reactions of the neutral forms with amino acids, Photochem. Photobiol., 28:169.

    Article  CAS  Google Scholar 

  • Hemmerich, P., Massey, V., and Weber, G., 1967, Photoinduced benzyl substitution of flavins by phenylacetate: a possible model for flavoprotein catalysis, Nature, 213:728.

    Article  PubMed  CAS  Google Scholar 

  • Hendricks, S. B., and Van der Woude, W. J., 1983, How phytochrome acts — perspectives on the continuing quest, in: “Encyclopedia of Plant Physiology, New Series, 16A,” Shropshire, W. Jr., and Mohr, H., eds., Springer-Verlag, Berlin, p. 3.

    Google Scholar 

  • Hovanessian, A. G., Galabru, J., Riviere, Y., and Montagnier, L., 1988, Efficiency of poly(A)poly(U) as an adjuvant, Immunol. Today, 9:161.

    Article  PubMed  CAS  Google Scholar 

  • Huber, S. C, and Huber, J. L. A., 1990, Regulation of spinach leaf sucrose-phosphate synthase by multisite phosphorylation, in: “Current Topics in Plant Biochemistry and Physiology 9,”, Randall, D. D., and Blevins, D. G., eds., University of Missouri, Columbia, Missouri, p. 329.

    Google Scholar 

  • Iino, M., 1988, Pulse-induced phototropisms in oat and maize coleoptiles, Plant Physiol., 88:823.

    Article  PubMed  CAS  Google Scholar 

  • Laskowski, M., and Briggs, W. R., 1989, Regulation of pea epicotyl elongation by blue light, Plant Physiol, 89:293.

    Article  PubMed  CAS  Google Scholar 

  • Nimmo, H. G., 1990, Regulation of phosphoenolpyruvate carboxylase by reversible phosphorylation in C4 and Crassulacean Acid Metabolism Plants, in: “Current Topics in Plant Biochemistry and Physiology 9,” Randall, D. D., and Blevins, D. G., eds., University of Missouri, Columbia, Missouri, p. 357.

    Google Scholar 

  • Palit, A., Galland, P., and Lipson, E. D., 1989, High- and low-intensity photosystems in Phycomyces phototropism: Effects of mutations in genes madA, madB, and madC,Planta, 177:547.

    Article  Google Scholar 

  • Randall, D. D., Miernyk, J. A., David, N. R., Budde, R. J. A., Schuller, K. A., Fang, T. K., and Gemel, J., 1990, Phosphorylation of the leaf mitochondrial pyruvate dehydrogenase complex and inactivation of the complex in the light, in: “Current Topics in Plant Biochemistry and Physiology 9,” Randall, D. D., and Blevins, D. G., eds., University of Missouri, Columbia, Missouri, p. 313.

    Google Scholar 

  • Ranjeva, R., and Boudet, A., 1987, Phosphorylation of proteins in plants: regulatory effects and potential involvement in stimulus/response coupling, Annu. Rev. Plant Physiol.,38:73.

    Article  CAS  Google Scholar 

  • Senger, H., ed., 1987, “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” Vol. I and II, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Short, T. W., and Briggs, W. R., 1990, Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L.) seedlings, Plant Physiol., 92:179.

    Article  PubMed  CAS  Google Scholar 

  • Short, T. W., Gallagher, S., and Briggs, W. R., 1990, Protein phosphorylation as a possible signal transduction step for blue light-mediated phototropism in pea (Pisum sativum L.) epicotyls, in: “Current Topics in Plant Biochemistry and Physiology 9,”, Randall, D. D., and Blevins, D. G., eds., University of Missouri, Columbia, Missouri, p. 232.

    Google Scholar 

  • Widdell, S., and Larsson, C., 1987, Plasma membrane purification, in: “Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms,” Vol. II, CRC Press, Boca Raton, Florida, p. 99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Short, T.W., Porst, M., Briggs, W.R. (1991). On the Trail of the Photoreceptor for Phototropism in Higher Plants. In: Lenci, F., Ghetti, F., Colombetti, G., Häder, DP., Song, PS. (eds) Biophysics of Photoreceptors and Photomovements in Microorganisms. NATO ASI Series, vol 211. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5988-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5988-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5990-6

  • Online ISBN: 978-1-4684-5988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics