Skip to main content

Characterization of Senescent Red Cells from the Rabbit

  • Chapter
Red Blood Cell Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 307))

Abstract

The mammalian erythrocyte survives a multitude of insults during its circulating lifespan including oxidant attack, calcium influxes, repeated deformation and glycation among others (1). Nevertheless, the majority of red cells survive and apparently function well for the entire pre-programmed time period which represents their lifespan. Neither the mechanism which determines the time frame of the lifespan nor the signal that triggers the removal of the senescent cell by macrophages is known (1). The lack of knowledge concerning this fundamental biological process can clearly be attributed to a single underlying problem, the difficulty of reliably isolating aged red cells (2). The majority of investigators in this field have utilized a variety of physical techniques for isolating aged cells (1) based upon assumptions as to changes which may occur with red cell aging, for example, an increase in cellular density. As a result, there have been literally thousands of reports documenting the changes in red cell properties as a function of cellular density with the assumption that these findings reflect changes with age. It has now, however, become increasingly clear that density fractionation is not capable of producing a sufficiently pure population of aged erythrocytes to allow any biochemical characterization of age-dependent changes (3–6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. R. Clark, Senescence of Red Blood Cells, Progress and Problems. Physiol. Rev. 68:503 (1988).

    CAS  Google Scholar 

  2. E. Beutler, Isolation of the aged, Blood Cells 14:1 (1988).

    PubMed  CAS  Google Scholar 

  3. M. Morrison, C. W. Jackson, T. J. Mueller, T. Huang, M. E. Docktor, W. W. S. Walker, J. A. Singer, and H. H. Edwards, Does red cell density-correlate with red cell age, Biomed. Biochim. Acta 42:107 (1983).

    Google Scholar 

  4. M. R. Clark, L. Corash, and R. H. Jensen, Density distribution of aging, transfused human red cells, Blood 74:217A (1989).

    Google Scholar 

  5. G. L. Dale and S. L. Norenberg, Density fractionation of rabbit erythrocytes results in only a slight enrichment for aged cells, Biochim. Biophys Acta, in press (1990).

    Google Scholar 

  6. M. G. Luthra, J. M. Friedman, and D. A. Sears, Studies of density fractions of normal human erythrocytes labeled with iron-59 in vivo, J. Lab. Clin. Med. 94:879 (1979).

    PubMed  CAS  Google Scholar 

  7. A. M. Ganzoni, R. Oakes, and R. S. Hillman, Red cell ageing in vivo, J. Clin. Invest. 50:1373 (1971).

    Article  PubMed  CAS  Google Scholar 

  8. E. Beutler and G. Hartman, Age-related red cell enzymes in children with transient erythroblastopenia of childhood and with hemolytic anemia, Pediatr. Res. 19:44 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. T. Suzuki and G. L. Dale, Biotinylated erythrocytes: In vivo survival and in vitro recovery, Blood 70:791 (1987).

    PubMed  CAS  Google Scholar 

  10. T. Suzuki and G. L. Dale, Senescent erythrocytes: The isolation of in vivo aged cells and their biochemical characteristics, Proc. Natl. Acad. Sci. USA 85:1647 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. G. L. Dale and S. L. Noremberg, Time-dependent loss of adenosine 5′-monophosphate deaminase activity may explain elevated adenosine 5′-triphosphate levels in senescent erythrocytes, Blood 74:2157 (1989).

    PubMed  CAS  Google Scholar 

  12. A. M. Ganzoni, J. P. Barras, and H. R. Marti, Red cell ageing and death Vox Sang. 30:161 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. D. E. Paglia, W. N. Valentine, M. Nakatani, and R. A. Brockway, AMP deaminase as a cell-age marker in transient erythroblastopenia of childhood and its role in the adenylate economy of erythrocytes, Blood 74:2161 (1989).

    PubMed  CAS  Google Scholar 

  14. T. Suzuki and G. L. Dale, Membrane proteins in senescent erythrocytes, Biochem. J. 257:37 (1989).

    PubMed  CAS  Google Scholar 

  15. T. J. Mueller, C. W. Jackson, M. E. Docktor, and M. Morrison, Membrane skeletal alterations during in vivo mouse red cell aging. Increase in the Band 4.1a:4.1b ratio, J. Clin. Invest. 79:492 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. E. Beutler, in Red Cell Metabolism, A Manual of Biochemical Methods, New York, Grune and Stratton, 1983.

    Google Scholar 

  17. G. L. Dale, Radioisotopic assay for erythrocyte adenosine 5′-monophosphate deaminase, Clin. Chim. Acta 182:1 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. J. D. Torrance, D. Whittaker, and E. Beutler, Purification and properties of human erythrocyte pyrimidine 5′-nucleotidase, Proc. Natl. Acad. Sci. USA 74:3701 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. F. Bontemps, G. Van den Berghe, and H. G. Hers, Pathways of adenine nucleotide catabolism in erythrocytes, J. Clin. Invest. 77:824 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. F. L. Meyskens and H. E. Williams, Adenosine metabolism in human erythrocytes, Biochim. Biophys. Acta 240:170 (1971).

    PubMed  CAS  Google Scholar 

  21. N. Ogasawara H. Goto, Y. Yamada, I. Nishigaki, T. Itoh, and I. Hasegawa, Complete deficiency of AMP deaminase in human erythrocytes, Biochem. Biophys. Res. Commun. 122:1344 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. M. M. B. Kay, Mechanism of removal of senescent cells by human macrophages in situ, Proc. Natl. Acad. Sci. USA 72:3521 (1975).

    Article  PubMed  CAS  Google Scholar 

  23. J. A. Singer, L. K. Jennings, C. W. Jackson, M. E. Dockter, M. Morrison, and W. S. Walker, Erythrocyte homeostasis: Antibody-mediated recognition of the senescent state by macrophages, Proc. Natl. Acad. Sci. USA 83:5498 (1986).

    Article  PubMed  CAS  Google Scholar 

  24. H. U. Lutz, S. Fasler, P. Stammler, F. Bussolino, and P. Arese, Naturally occurring anti-band 3 antibodies and complement in phagocytosis of oxidatively-stressed and in the clearance of senescent red cells, Blood Cells 14:175 (1988).

    PubMed  CAS  Google Scholar 

  25. M. Magnani, S. Papa, L. Rossi, M. Vitale, G. Fornaini, and F. A. Manzoli, Membrane-bound immunoglobulins increase during red blood cell aging, Acta Haematol. 79:127 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. W. F. Rosse, Quantitative immunology of immune hemolytic anemia. II. The relationship of cell-bound antibody to hemolysis and the effect of treatment, J. Clin. Invest. 50:734 (1971).

    Article  PubMed  CAS  Google Scholar 

  27. B. Zuppanska, E. Thompson, E. Brojer, and A. H. Merry, Phagocytosis of erythrocytes sensitized with known amounts of IgGl and IgG3 anti-Rh antibodies, Vox Sang. 53:96 (1987).

    Article  Google Scholar 

  28. M. O. Jeje, M. A. Blajchman, K. Steeves, P. Horsewood, and J. G. Kelton, Quantitation of red cell associated IgG using an immunoradiometric assay, Transfusion 24:473 (1984).

    Article  PubMed  CAS  Google Scholar 

  29. G. L. Dale, S. L. Norenberg, and R. B. Daniels, Phospholipid and cholesterol content of senescent erythrocytes, submitted.

    Google Scholar 

  30. W. F. Rosse, Phosphatidylinositol-linked proteins and paroxysmal nocturnal hemoglobinuria, Blood 75:1595 (1990).

    PubMed  CAS  Google Scholar 

  31. E. Kamber, A. Poyiagi, and G. Deliconstantinos, Modifications in the activities of membrane-bound enzymes during in vivo ageing of human and rabbit erythrocytes, Comp. Biochem. Physiol. 77B:95 (1984).

    CAS  Google Scholar 

  32. G. L. Dale and N. Mohandas, manuscript in preparation.

    Google Scholar 

  33. Y. Ravindranath, F. Brohn, and R. M. Johnson, Erythrocyte age-dependent change of membrane protein 4.1: Studies in transient erythroblastopenia, Pediatr. Res. 21:275 (1987).

    Article  PubMed  CAS  Google Scholar 

  34. This is publication number 6506-MEM from the Research Institute of Scripps Clinic. Partial support was provided by grant AG 08545 from the National Institutes of Health.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Dale, G.L., Daniels, R.B., Beckman, J., Norenberg, S.L. (1991). Characterization of Senescent Red Cells from the Rabbit. In: Magnani, M., De Flora, A. (eds) Red Blood Cell Aging. Advances in Experimental Medicine and Biology, vol 307. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5985-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5985-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5987-6

  • Online ISBN: 978-1-4684-5985-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics