Skip to main content

Phagocytosis of Phenylhydrazine Oxidized and G-6-PD Deficient Red Blood Cells: The Role of Sugars and Cell-Bound Immunoglobulins

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 307))

Abstract

Senescent or damaged red blood cells (RBCs) are selectively removed from the blood by macrophages in the spleen and liver (1). Changes observed in these cells involve various membranal modifications such as desialyzation (2–4), surface galactosyl exposure (5–7), degradation or configurai aggregation of band 3 (8-10) and changes in membrane phospholipid asymmetry (11,12). These modifications have been reported to be recognized by macrophages either directly (4–7,11,12), or indirectly, by binding of autoantibodies and complement components to the cells (2,8–10,13). Similar recognition mechanisms have been reported in some damaged RBCs such as in thalassemia and sickle cell anemia (10,11,14,15).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Berlin, P. O. Berk, The biological life of the red cell., in: The Red Blood Cell, Surgenor, Mac N. eds. 2nd ed., vol. 2, New York, p. 957 (1975).

    Google Scholar 

  2. E. M. Alderman, H. H. Fudenberg, R. E. Lovins, Isolation and characterization of an age-related antigen present on senescent human red blood cells, Blood 58:34 (1981).

    Google Scholar 

  3. S. Kelm, A. K. Shukla, J. C. Paulson, R. Schauer, Reconstitution of the masking effect of sialic acid groups on sialidase treated erythrocytes by the action of sialyltransferases, Carb. Res. 149:59 (1986).

    Article  CAS  Google Scholar 

  4. D. Aminoff, The role of sialoglycoconiugates in the aging and sequestration of red cells from circulation, Blood Cells 14:229 (1988).

    PubMed  CAS  Google Scholar 

  5. J. Schleppe-Schafer, V. Kolb-Bachofen, H. Kolb, Identification of a receptor for senescent erythrocytes on liver macrophages, Biochem. Biophys. Res. Comm. 115:551 (1983).

    Article  Google Scholar 

  6. J. Schlepper-Schafer, V. Kolb-Bachofen, Red cell aging results in a change of cell surface carbohydrate epitopes allowing for recognition by galactose specific receptors of rat liver macrophages, Blood Cells 14:170 (1988).

    Google Scholar 

  7. N. Vaysse, L. Gattegno, D. Bladier, D. Aminoff, Adhesion and erythrophagocytosis of human senescent erythrocytes by autologous monocytes and their inhibition by galactosyl RBC derivates, Proc. Natl. Acad. Sci. USA 83:1339 (1986).

    Article  PubMed  CAS  Google Scholar 

  8. M. M. B. Kay, Aging of cell membrane molecules leads to appearance of an aging antigen and removal of senescent cells, Gerontology, 31:215 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. H. U. Lutz, S. Fasler, P. Stammler, F. Bussolino, P. Arese, Naturally occurring antiband 3 antibodies and complement in phagocytosis of oxidatively-stressed and in clearance of senescent red cells, Blood Cells 14:175 (1984).

    Google Scholar 

  10. S. M. Waugh, B. M. Williardson, R. Kannan, R. J. Labtka, P. S. Low, Heinz bodies induce clustering of Band 3, glycophorin and ankirin in sickle cell erythrocytes, J. Clin. Invest, 78:1155 (1986).

    Article  PubMed  CAS  Google Scholar 

  11. A. J. Schroit, Y. Tanaka, J. Madsen, I. J. Fidler, The recognition of red blood cells by macrophages: role of phosphatidylserine and possible implications of membrane phospholipid asymetry, Biol. Cell 51:227 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. L. McEvoy, P. Williamson, R. A. Schlegel, Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages, Proc. Natl. Acad. Sci. Usa 83:3311 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. U. Galili, I. Flechner, A. Knyszynsky, D. Danon, E. A. Rachmilewitz, The natural antigalactosyl IgG on human normal senescent red blood cells, Br. J. Haem. 62:317 (1986).

    Article  CAS  Google Scholar 

  14. A. Knyszynski, D. Danon, I. Kahane, E. A. Rachmilewitz, Phagocytosis of nucleated and mature B thalassemic red blood cells by mouse macrophages “in vitro”, Br. J. Haem. 43:251 (1979).

    Article  CAS  Google Scholar 

  15. U. Galli, A. Korkesh, I. Kahane, E. A. Rahmilewitz, Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells. Blood 61:1258 (1983).

    Google Scholar 

  16. N. Bashan, R. Pothashnik, R. Feozer, S. W. Moses. The effect of oxidative agents on normal and G6PD deficient red blood cell membranes, in: Advances in Red Cell Biology, D. J. Weatheral, G. Fiorelly, S. Gorini eds., New York, p. 365 (1982).

    Google Scholar 

  17. L. M. Snyder, N. L. Fortier, J. Trainor, J. Jacobs, L. Leb, B. Lubin, D. Chim. S. Shohet, N. Mohandas, Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics and spectrin-hemoglobin crosslinking, J. Clin. Invest. 76:1971 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. S. K. Jain, P. Hochstein, Generation of superoxide radicals by hydrazine. Its role in Phenylhydrazine induced hemolytic anemia, Biochim. Bipohys. Acta 586:128 (1979).

    Article  CAS  Google Scholar 

  19. C. C. Winterboum, Free radical production and oxidative reactions of hemoglobin, Envir. Health Persp. 64:321 (1985).

    Article  Google Scholar 

  20. B. Vilsen, H. Nielsen, Reaction of Phenylhydrazine with erythrocytes, Clin. Pharm. 33:2739 (1984).

    CAS  Google Scholar 

  21. A. Arduini, A. Stern, Spectrin degradation in intact red blood cells by Phenylhydrazine, Biochem. Pharmacol. 34:4238 (1985).

    Article  Google Scholar 

  22. P. S. Low, S. M. Waugh, K. Zinke, D. Dreckhahn, The role of hemoglobin denaturation and band 3 clustering in red blood cell aging, Science 227:531 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. O. Shalev, M. N. Leida R. P. Hebbel, H. S. Jacob, J. W. Eaton, Abnormal erythrocyte calcium hemostasis in oxidant-induced hemolytic disease. Blood 58:1232 (1981).

    PubMed  CAS  Google Scholar 

  24. M. Beppu, H. Ochiai, K. Kikugawa, Macrophage recognition of the erythrocytes modified by oxidizing agents, Biochim. Biophys Acta 930:244 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. M. Magnani, V. Stocchi, L. Cucchiarini, L. Chiarantini, G. Fornaini, Red blood cell phagocytosis and lysis following oxidative damage by Phenylhydrazine, Cell. Biochem. and Function 4:263 (1986).

    Article  CAS  Google Scholar 

  26. G. S. Platt., J. F. Falcone, Membrane protein lesion in erythrocytes with Heinz bodies, J. Clin. Invest. 82:1051 (1988).

    Article  PubMed  CAS  Google Scholar 

  27. T. P. Flynn, G. J. Jahnson, D. W. Allen, Mechanism of decreased erythrocyte deformability and survival in glucose 6 phosphate dehydrogenase mutants, in: Recent Clinical and Experimental Advances, Alan R. Liss A. Eds., New York, Raven p. 231 (1981).

    Google Scholar 

  28. A. Yoshida, Hemolitic anemia and G6PD deficiency, Science 179:532 (1973).

    Article  PubMed  CAS  Google Scholar 

  29. S. L. Schrier, Human erythrocyte G6PD deficiency: pathophysiology, prelevance, diagnosis and management, Blood Dis. 41 (1980).

    Google Scholar 

  30. G. J. Johnson, D. W. Allen, S. Cadman, V. F. Fairbanks, J. G. White, B. C. Lampkin, M. E. Kaplan, Red-cell-membrane aggregates in glucose-6-phosphate dehydrogenase mutants with chronic hemolytic disease, New Engl. J. Med. 301:522 (1979).

    Article  PubMed  CAS  Google Scholar 

  31. T. P. Flynn, G. J. Johson, D. W. Allen, Mechanism of decreased deformability and survival in glucose-6-phosphate dehydrogenase mutants, in: Erythrocyte Membranes 2: Recent Clinical and Experimental Advances, Alan R Liss, New York (1981).

    Google Scholar 

  32. E. Alhanaty, M. Snyder, M. B. Sheetz, Glucose-6-phosphate dehydrogenase have an impaired shape recovery system, Blood 63(5):1198 (1984).

    PubMed  CAS  Google Scholar 

  33. M. A. Klausner, L. J. Hirsch, P. F. Leblond, J. K. Chamberlain, M. R. Klemperer, G. B. Segel, Contrasting splenic mechanism in the blood clearance of red blood cells and colloidal particles, Blood 46(6):965 (1975).

    PubMed  CAS  Google Scholar 

  34. S. Kyoizumi, T. Masuda, A lectin-like receptor on murine macrophage cell line cells Mm1: involvement of sialic acid-binding sites in opsonin-independent phagocytosis for xenogenic red cells, J. Leu. Biol. 37:289 (1985).

    CAS  Google Scholar 

  35. S. Horn, J. Gopas, N. Bashan, A lectin-like receptor on murine macrophage is involved in the recognition and phagocytosis of human red cells oxidized by Phenylhydrazine, Biochem. Pharmacol. 39(4):775 (1990).

    Article  PubMed  CAS  Google Scholar 

  36. E. Beuler, C. West, K. G. Blume, The removal of leukocytes and platelets from whole blood, J. Lab. Clin. Med. 88:328 (1976).

    Google Scholar 

  37. P. Yam, L. D. Petz, P. Spath, Detection of IgG sensitization of red cells with 125I-Staphylococcal protein, Am. J. Hematol. 12:337 (1983).

    Article  Google Scholar 

  38. A. Knyszynsky, J. S. Leibovich, Interaction of macrophages with “old” red blood cells from syngeneic mice in vitro and independence of the recognition process on macrophage Fc receptors, Mech. Aging Dev. 29:171 (1985).

    Article  Google Scholar 

  39. G. Kaplan, T. Eskeland, R. Seljelid, Difference in the effect of immobilized ligands on the Fc and C3 receptors of mouse peritoneal macrophages in vitro, Scand. J. Immunol. 7:19 (1978).

    Article  PubMed  CAS  Google Scholar 

  40. E. L. Kean, N. Sharon, Inhibition of yeast binding to mouse peritoneal macrophages by wheat germ agglutinin: a novel effect of the lectin on phagocytic cells BBRC 148(3):1202 (1987).

    PubMed  CAS  Google Scholar 

  41. A. Perry, Y. Keisari, I. Ofek, Liver and macrophage surface lectins as determinants in blood clearance and cellular attachment of bacteria, FEMS Microbiol. Lett. 27:345 (1985).

    Article  CAS  Google Scholar 

  42. N. Sharon, Surface carbohydrates and surface lectins are recognition determinants in phagocytosis, Immunol. Today 5:143 (1984).

    Article  CAS  Google Scholar 

  43. C. E. Smalley, E. M. Tucker, Blood group A antigen site distribution and immunoglobulin binding in relation to cell age, Br. J. Haematol. 54:209 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. G. J. Bosman, M. M. B. Kay, Erythrocyte aging: a comparison of model systems for stimulating cellular aging in vitro, Blood Cells. 14(1):19 (1988).

    PubMed  CAS  Google Scholar 

  45. S. Horn, N. Bashan, J. Gopas, Phagocytosis of phenyhydrazine oxidized erythrocytes: the role of cell-bound immunoglobulins, submitted.

    Google Scholar 

  46. F. Bussolino, F. Turrini, P. Arese, Measurements of phagocytosis utilizing [14C] cyanate-labelled human red cells and monocytes, Br. J. Haem. 66:271 (1986).

    Article  Google Scholar 

  47. A. Brovelli, C. Seppi, A. Bardoni, C. Balduini, H. U. Lutz, Re-evaluation of the structural integrity of red-cell glycoproteins during aging in vivo and nutrient deprivation, Biochem-. J. 242:115 (1987).

    PubMed  CAS  Google Scholar 

  48. D. Cola, P. Sacchetta, P. Battista, Proteolysis in human erythrocytes is triggered only by selected oxidative stressing agents, Ital. J. Biochem. 37(3):129 (1988).

    PubMed  Google Scholar 

  49. M. A. Runge-Morris, S. Jacob, R. F. Novak, Characterization of hydrazine-stimulated proteolysis in human erythrocytes Toxicol. Appl. Pharmacol. 94:414 (1988).

    Article  PubMed  CAS  Google Scholar 

  50. M. M. B. Kay, G. J. C. G. M. Bosman, G. J. Johnson, A. H. Beth, band-3-polymers and aggregates, and hemoglobin precipitates in red cell aging, Blood Cells. 14(1):275 (1988).

    PubMed  CAS  Google Scholar 

  51. R. Kannan, R. Laboyka, P. S. Low, Isolation and characterization of the hemichrome-stabilized membrane protein aggregates from sickle erythrocytes. Major sites of autologous antibody binding, J. Biol. Chem. 263(27):13766 (1988).

    PubMed  CAS  Google Scholar 

  52. H. U. Lutz, F. Bussolino, R. Flepp, S. Fasler, P. Stammler, M. D. Kazatchkine, P. Arese, Naturally occurring anti-band-3 antibodies and complement together mediate phagocytosis of oxidatively stressed erythrocytes, Proc. Natl. Acad. Sci. USA 84:7368 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Horn, S., Bashan, N., Moses, S., Gopas, J. (1991). Phagocytosis of Phenylhydrazine Oxidized and G-6-PD Deficient Red Blood Cells: The Role of Sugars and Cell-Bound Immunoglobulins. In: Magnani, M., De Flora, A. (eds) Red Blood Cell Aging. Advances in Experimental Medicine and Biology, vol 307. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5985-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5985-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5987-6

  • Online ISBN: 978-1-4684-5985-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics