Skip to main content

Human Erythrocyte D-Aspartyl/L-Isoaspartyl Methyltransferases: Enzymes that Recognize Age-Damaged Proteins

  • Chapter
Red Blood Cell Aging

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 307))

Abstract

Among the large number of protein post-biosynthetic modifications described so far are a group of non-enzymatic reactions that reflect the spontaneous, intrinsic, decomposition of these macromolecules as they age in cells. These alterations include oxidation (1), formation of advanced glycosylation end products (2), and linked deamination/isomerization/ racemization reactions (3). Our interest has been focused on the latter reactions that lead to the loss of L-aspartyl and L-asparaginyl residues in proteins and the recognition of the damaged proteins by enzymes that can lead to their cellular removal by repair or degradation reactions (4–9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. J. A. Davies, A. G. Wiese, A. Sevanian and E.H. Kim, Repair systems in oxidative stress, in “Molecular biology of aging”, (C.E. Finch and T.E. Johnson, eds.), Wiley-Liss, New York, 1990, pp. 123–141.

    Google Scholar 

  2. H. Vlassara, Advanced non-enzymatic tissue glycosylation: mechanism implicated in the complications associated with aging, in “Molecular Biology of Aging”, (C.E. Finch and T.E. Johnson, eds.), Wiley-Liss, New York, 1990, pp. 171–185.

    Google Scholar 

  3. T. Geiger and S. Clarke, Deamidation, isomerization and racemization at asparaginyl and aspartyl residues in peptides: succinimide-linked reactions that contribute to protein degradation, J. Biol. Chem. 262:785 (1987).

    PubMed  CAS  Google Scholar 

  4. S. Clarke, The role of aspartic acid and asparagine residues in the aging of erythrocyte proteins: cellular metabolism of racemized and isomerized forms by methylation reactions, in “Cellular and Molecular Aspects of Aging: The Red Cell as a Model”, (J.W. Eaton, D.K. Konzen and J.G. Write eds.) Alan R. Liss Inc., New York, 1985, pp. 91–103.

    Google Scholar 

  5. S. Clarke, Protein carboxyl methyltransferases: two distinct classes of enzymes, Ann. Rev. Biochem. 54:479 (1985).

    Article  PubMed  CAS  Google Scholar 

  6. J. Lowenson and S. Clarke, Does the chemical instability of aspartyl and asparaginyl residues in proteins contribute to erythrocyte aging? The role of protein carboxyl methylation reactions, Blood Cells 14:103 (1988).

    PubMed  CAS  Google Scholar 

  7. J. D. Lowenson and S. Clarke, Spontaneous degradation and enzymatic repair of aspartyl and asparaginyl residues in aging red cell proteins analyzed by computer simulation, Gerontology, 1990 in press.

    Google Scholar 

  8. P Galletti, D. Ingrosso, C. Manna, P. Iardino and V. Zappia, in “Protein Metabolism in Aging”, (H.L. Segal, M. Rothstein and E. Bergamini eds.) Wiley-Liss, New York, (1990), pp. 15–32.

    Google Scholar 

  9. I. M. Ota and S. Clarke, The function and enzymology of protein D-Aspartyl/L-Isoaspartyl methyltransferases in eukaryotic and prokaryotic cells, in “Protein Methylation”, (W. K. Paik and S. Kim., eds.), CRC Press, Boca Raton, (1990) p. 179–194.

    Google Scholar 

  10. A. B. Robinson and C. J. Rudd, Deamidation of glutaminyl and asparaginyl residues in peptides and proteins, Curr. Top. Cell. Regul. 8:24 (1974).

    Google Scholar 

  11. S. Clarke, propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins, Int. J. Peptide Protein Res. 30:808 (1987).

    Article  CAS  Google Scholar 

  12. R. C. Stephenson and S. Clarke, Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins, J. Biol. Chem. 264:6164 (1989).

    PubMed  CAS  Google Scholar 

  13. I. M. Ota, L. Ding and S. Clarke, Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyltransferase, J. Biol. Chem. 262:8522 (1987).

    PubMed  CAS  Google Scholar 

  14. I. M. Ota and S. Clarke, Enzymatic methylation of L-isoaspartyl residues derived from aspartyl residues in affinity-purified calmodulin: the role of conformational flexibility in spontaneous isoaspartyl formation, J. Biol. Chem. 264:54 (1989).

    PubMed  CAS  Google Scholar 

  15. J. L. Bada, In vivo racemization in mammalian proteins, Methods Enzymol., 106:98 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. L. S. Brunauer and S. Clarke, Age-dependent accumulation of protein residues which can be hydrolyzed to D-aspartic acid in human erythrocytes, J. Biol. Chem. 261:12538 (1986).

    PubMed  CAS  Google Scholar 

  17. P. Galletti, P. Iardino, D. Ingrosso, C. Manna and V. Zappia, Enzymatic methyl esterification of a deamidated form of mouse epidermal growth factor, Int. J. Peptide Protein Res. 33:397 (1989).

    Article  CAS  Google Scholar 

  18. C. George-Nascimento, J. Lowenson, M. Borissenko, M. Calderon, A. Medina-Selby, J. Kuo, S. Clarke and A. Randolph, Replacement of a labile aspartyl residue increases the stability of human epidermal growth factor, Biochemistry 29:9584 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. K. U. Yuksel and R. W. Gracy, In vitro deamidation of human triosephosphate isomerase, Arch. Biochem. Biophys. 248:452 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. P. Galletti, A. Ciardiello, D. Ingrosso, A. Di Donato and G. D’Alessio, Repair of isopeptide bonds by protein carboxyl O-Methyltransferase: seminal ribonuclease as a model system, Biochemistry 27:1752 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. I. M. Ota and S. Clarke, Multiple sites of methyl esterification of calmodulin in intact human erythrocytes, Arch. Biochem. Biophys. 279:320 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. B. A. Johnson, J. M. Shirokawa, W. S. Hancock, M. W. Spellman, L. J. Basa and D. W. Aswad, Formation of isoaspartate at two distinct sites during in vitro aging of human growth Hormone, J. Biol. Chem. 264:14262 (1989).

    PubMed  CAS  Google Scholar 

  23. A. Artigues, A. Birkett and V. Schirch, Evidence for the in vivo deamidation and isomerization of an asparaginyl residue in cytosolic serine hydroxymethy1transferase, J. Biol. Chem. 265:4853, 1990.

    PubMed  CAS  Google Scholar 

  24. B. A. Johnson, E.L. Langmach and D. W. Aswad, Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase, J. Biol. Chem. 262:12283 (1987).

    PubMed  CAS  Google Scholar 

  25. P. N. McFadden and S. Clarke, Methylation at D-aspartyl residues in red cells: a possible step in the repair of aged membrane proteins, Proc. Natl. Acad. Sci. U. S. A. 79:2460 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. E. D. Murray Jr. and S. Clarke, Synthetic peptide substrates for the erythrocyte protein carboxyl methyltransferase: detection of a new site of methylation at isomerized L-aspartyl residues, J. Biol. Chem. 259:10722 (1984).

    PubMed  CAS  Google Scholar 

  27. D. W. Aswad, Stoichiometric methylation of porcine adrenocorticotropin by protein carboxyl methyltransferase requires deamidation of asparagine 25: evidence for methylation at the alpha-carboxyl group of atypical L-isoaspartyl residues, J. Biol. Chem. 259:10714 (1984).

    PubMed  CAS  Google Scholar 

  28. C. M. O’Connor and S. Clarke, Methylation of erythrocyte membrane proteins at extracellular and intracellular D-aspartyl sites in vitro J. Biol. Chem. 258:8485 (1983).

    Google Scholar 

  29. C. M. O’Connor and S. Clarke, Carboxyl methylation of cytosolic proteins in intact human erythrocytes: Identification of numerous methyl accepting proteins including hemoglobin and carbonic anhydrase, J. Biol. Chem. 259:2570 (1984).

    PubMed  Google Scholar 

  30. C. M. O’Connor, D. W. Aswad and S. Clarke, Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates, Proc. Natl. Acad. Sci. U. S. A. 81:7757 (1984).

    Article  PubMed  Google Scholar 

  31. L. L. Lou and S. Clarke, Enzymatic methylation of band 3 anion transporter in intact human erythrocytes, Biochemistry, 26:52 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. P. N. McFadden and S. Clarke, Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins, Proc. Natl. Acad. Sci. U.S.A., 84:2595 (1987).

    Article  PubMed  CAS  Google Scholar 

  33. B. A. Johnson, E. D. Murray Jr., S. Clarke, D. B. Glass and D. W. Aswad, Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides, J. Biol. Chem. 262:5622 (1987).

    PubMed  CAS  Google Scholar 

  34. J. D. Lowenson and S. Clarke, Identification of isoaspartyl-containing sequences in peptides and proteins that are unusually poor substrates for the class II protein carboxyl methyltransferase, J. Biol. Chem. 265:3106 (1990).

    PubMed  CAS  Google Scholar 

  35. K. L. Oden and S. Clarke, S-adenosyl-L-methionine synthetase from human erythrocytes: role in the regulation of cellular S-adenosylmethionine levels, Biochemistry 22:2978 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. J. R. Barber, B. H. Morimoto, L. S. Brunauer and S. Clarke, Metabolism of S-adenosyl-L-methionine in intact human erythrocytes, Biochim. Biophys. Acta 886:361 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. C. Freitag and S. Clarke, Reversible methylation of cytoskeletal and membrane proteins in human erythrocytes, J. Biol. Chem. 256:6102 (1981).

    PubMed  CAS  Google Scholar 

  38. C. A. Ladino and C. M. O’Connor, Protein carboxyl methylation and methyl ester turnover in density-fractionated human erythrocytes, Mech. Ageing Develop. 55:123 (1990).

    Article  CAS  Google Scholar 

  39. L. L. Lou and S. Clarke, Carboxyl methylation of human erythrocyte band 3 in intact cells: Relation to anion transport activity, Biochem. J. 235:183 (1986).

    PubMed  CAS  Google Scholar 

  40. J. R. Barber and S. Clarke, Membrane protein carboxyl methylation does not appear to be involved in the response of erythrocytes to cytoskeletal stress, Biochem. Biophys. Res. Commun. 123:133 (1984).

    Article  PubMed  CAS  Google Scholar 

  41. P. Galletti, D. Ingrosso, C. Manna, G. Pontoni and V. Zappia, Enzymatic basis for the calcium-induced decrease of membrane protein methyl esterification in intact erythrocytes: evidence for an impairment of S-adenosylmethionine synthesis, Eur. J. Biochem. 154:489 (1986).

    Article  PubMed  CAS  Google Scholar 

  42. J. R. Barber and S. Clarke, Membrane protein carboxyl methylation increases with human erythrocyte age: evidence for an increase in the number of methylatable sites, J. Biol. Chem. 258:1189 (1983).

    PubMed  CAS  Google Scholar 

  43. P. Galletti, D. Ingrosso, A. Nappi, V. Gragnaniello, A. Iolascon and L. Pinto, Increased methyl esterification of membrane proteins in aged red blood cells: preferential esterification of ankyrin and band 4.1 cytoskeletal proteins, Eur. J. Biochem. 135:25 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. J. R. Barber and S. Clarke, Inhibition of protein carboxyl methylation by S-adenosyl-L-homocysteine in intact erythrocytes: physiological consequences, J. Biol. Chem. 259:7115 (1984).

    PubMed  CAS  Google Scholar 

  45. J. M. Gilbert, A. Fowler, J. Bleibaum and S. Clarke, Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes, Biochemistry 27:5227 (1988).

    Article  PubMed  CAS  Google Scholar 

  46. D. W. Aswad and E. A. Deight, Purification and characterization of two distinct isozymes of protein carboxymethylase from bovine brain, J. Neurochem. 40:1718 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. D. Ingrosso, A. W. Fowler, J. Bleibaum and S. Clarke, Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes: evidence for protein, DNA, RNA and small molecule S-adenosylmethionine-dependent methyltransferases, J. Biol. Chem. 264:20131 (1989).

    PubMed  CAS  Google Scholar 

  48. I. M. Ota, J. M. Gilbert and S. Clarke, Two major isozymes of the protein D-aspartyl/L-isoaspartyl methyltransferase from human erythrocytes, Biochem. Biophys. Res. Commun. 151:1136 (1988).

    Article  PubMed  CAS  Google Scholar 

  49. D. Ingrosso, A. W. Fowler, K. Bleibaum and S. Clarke, Specificity of endoproteinase Asp-N (Pseudomonas fragi): Cleavage at glutamyl residues in two proteins, Biochem. Biophys. Res. Commun. 162:1528 (1989).

    Article  PubMed  CAS  Google Scholar 

  50. W. J. Henzel, J. T. Stults, C. A. Hsu and D. W. Aswad, The primary structure of a protein carboxyl methyltransferase from bovine brain that selectively methylates L-isoaspartyl sites, J. Biol. Chem. 264:15905 (1989).

    PubMed  CAS  Google Scholar 

  51. M. Sato, T. Yoshida and S. Tuboi, Primary structure of rat brain protein carboxyl methyltransferase deduced from cDNA sequence, Biochim. Biophys. Res. Commun. 161:342 (1989).

    Article  CAS  Google Scholar 

  52. E. A. Romanik and C. M. O’Connor, Methylation of microinjected isoaspartyl peptides in xenopus oocytes: competition with protein carboxyl methylation reactions, J. Biol. Chem. 264:14050 (1989).

    PubMed  CAS  Google Scholar 

  53. J. Momand and S. Clarke, Rapid degradation of D-and L-succinimide-containing peptides by a post-proline endopeptidase from human erythrocytes, Biochemistry 26:7798 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ingrosso, D., Clarke, S. (1991). Human Erythrocyte D-Aspartyl/L-Isoaspartyl Methyltransferases: Enzymes that Recognize Age-Damaged Proteins. In: Magnani, M., De Flora, A. (eds) Red Blood Cell Aging. Advances in Experimental Medicine and Biology, vol 307. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5985-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5985-2_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5987-6

  • Online ISBN: 978-1-4684-5985-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics