Halothane-Cooling Contractures and Regulation of the Myoplasmic Ca2+ Concentration in Skeletal Muscle

  • Roberto Takashi Sudo
  • Guilherme Suarez-Kurtz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)


Malignant hyperthermia (MH) is a pharmacogenetic syndrome which may be triggered in susceptible individuals by drugs, such as halothane and succinylcholine, commonly used by anesthesiologists.1 Two standard procedures are presently used for investigating susceptibility to MH (MHS) in humans2,3 and swine.4 Both of these procedures rely on the increased sensitivity of muscle fragments obtained from biopsies to the contractile effects of halothane and/or caffeine. Caffeine- and halothane-induced contractures of isolated skeletal muscles are highly temperature-dependent. Reducing the temperature of the bathing medium from 37°C to 25°C reduces the ability of halothane to elicit tension in MHS swine muscles5 and decreases caffeine-induced tension in both normal or MHS human muscles.6


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. A. Britt and W. Kalow, Malignant hyperthermia: a statistical review, Canad Anaesth Soc J 17:293 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    The European Malignant Hyperpyrexia Group, A protocol for the investigation of malignant hyperpyrexia (MH) susceptibility, Br J Anaesth 56:1267 (1984).CrossRefGoogle Scholar
  3. 3.
    North American Malignant Hyperthermia Group, Standardization of the caffeine halothane muscle contracture test, Anesth Analg 69:511 (1989).Google Scholar
  4. 4.
    G. C. Allen, J. E. Fletcher, F. J. Huggins, P. A. Conti and H. Rosenberg, Caffeine and halothane contracture testing in swine using the recommendations of the North American Malignant Hyperthermia Group, Anesthesiology 72:71 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    T. E. Nelson, D. M. Bedell and E. W. Jones, Porcine Malignant Hyperthermia: effects of temperature and extracellular calcium concentration on halothane-induced contracture of susceptible skeletal muscle, Anesthesiology 42:301 (1975).PubMedCrossRefGoogle Scholar
  6. 6.
    B. A. Britt, L. Endrenyi, E. Scott and W. Frodis, Effect of temperature, time and fascicle size on the caffeine contracture test, Can Anaesth Soc J 27:1 (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Sakai, The effect of temperature and caffeine on activation of the contractile mechanism in the striated muscle fibers, Jikeikai Med J 12:88 (1965).Google Scholar
  8. 8.
    T. Sakai and S. Kurihara, A study of rapid cooling contracture from the viewpoint of excitation-contraction coupling, Jikeikai Med J 21:47 (1974).Google Scholar
  9. 9.
    G. Suarez-Kurtz and R. T. Sudo, The temperature dependence of halothane-induced contractures of skeletal muscle, Muscle & Nerve 9:47 (1986).CrossRefGoogle Scholar
  10. 10.
    R. T. Sudo, M. R. B. Souza, G. Zapata and G. Suarez-Kurtz, Halothane-cooling contractures of mammalian muscles, J Pharmacol Exp Ther 237:600 (1986).PubMedGoogle Scholar
  11. 11.
    R. T. Sudo, G. Zapata and G. Suarez-Kurtz, Studies of the halothane-cooling contractures of skeletal muscle, Can J Physiol Pharmacol 65:697 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    D. S. Wood, J. P. Zollman, J. P. Reuben and P. W. Brandt, Human skeletal muscle: properties of the “chemically skinned” fiber, Science (Wash. DC) 187:1075 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    M. M. Trachez, R. T. Sudo and G. Suarez-Kurtz, Alterations in the functional properties of skinned fibers from denervated rabbit skeletal muscle, Am J Physiol 259:C503 (1990).PubMedGoogle Scholar
  14. 14.
    M. M. Trachez, R. T. Sudo and G. Suarez-Kurtz, Potentiation of the halothane-cooling contractures of mammalian muscles by denervation, Can J Physiol Pharmacol 68:1207 (1990).PubMedCrossRefGoogle Scholar
  15. 15.
    R. T. Sudo, G. Zapata-Sudo and G. Suarez-Kurtz, Halothane cooling contractures of skinned mammalian muscle fibers, Anesthesiology 73:958 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    D. G. Stephenson and D. A. Williams, Calcium-activated force responses in fast-and slow-twitch skinned muscle fibres of the rat at different temperatures, J Physiol (Lond) 317:281 (1981).PubMedGoogle Scholar
  17. 17.
    F. N. Briggs, J. L. Poland and R. J. Solaro, Relative capabilities of sarcoplasmic reticulum in fast and slow mammalian skeletal muscles, J Physiol (Lond) 266:587 (1977).PubMedGoogle Scholar
  18. 18.
    G. Salviati, M. M. Sorenson and A. B. Eastwood, Calcium accumulation by the sarcoplasmic reticulum in two populations of chemically skinned human muscle fibers: Effects of calcium and cyclic AMP, J Gen Physiol 79:603 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Endo, S. Yagi, T. Ishizuka, K. Horiuti, Y. Koga and K. Amaha, Changes in the Ca-induced Ca release mechanism in the sarcoplasmic reticulum of the muscle from a patient with malignant hyperthermia, Biomed Res 4:83 (1983).Google Scholar
  20. 20.
    C. P. Bianchi and T. C. Bolton, Action of local anesthetics on coupling systems in muscle, J Pharmacol Exp Ther 157:388 (1967).PubMedGoogle Scholar
  21. 21.
    M. M. Sorenson, H. S. L. Coelho and J. P. Reuben, Caffeine inhibition of calcium accumulation by the sarcoplasmic reticulum in mammalian skinned fibers, J Membrane Biol 90:219 (1986).CrossRefGoogle Scholar
  22. 22.
    M. Endo, Calcium release from the sarcoplasmic reticulum, Pharmacol Rev 57:71 (1977).Google Scholar
  23. 23.
    K. Horiuti, Mechanism of contracture on cooling of caffeine-treated frog skeletal muscle fibres, J Physiol (Lond) 398:131 (1988).PubMedGoogle Scholar
  24. 24.
    A. Takagi, H. Sugita, Y. Toyokura and M. Endo, Malignant hyperpyrexia: Effects of halothane on single skinned muscle fibers, Proc Jpn Acad 52:603 (1976).Google Scholar
  25. 25.
    G. Suarez-Kurtz, M. J. B. Costa and S. Coutinho, The inhibitory effects of salicylate on contractility in skeletal muscle, J Pharmacol Exp Ther 230:478 (1984).PubMedGoogle Scholar
  26. 26.
    G. Zapata-Sudo, Efeitos de derivados salicilicos nas contraturas induzidas por resfriamento em musculos esqueleticos tratados com halotano, M.Sc. Dissertation presented to Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1989.Google Scholar
  27. 27.
    T. M. Nosek, K. Y. Fender and R. E. Godt, It is diprotonated inorganic phosphate that depresses forces in skinned muscle fibers, Science 236:191 (1987).PubMedCrossRefGoogle Scholar
  28. 28.
    A. Fabiato and F. Fabiato, Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles, J Physiol (Lond) 276:233 (1978).PubMedGoogle Scholar
  29. 29.
    Y. Nakamaru and A. Schwartz, Possible control of intracellular calcium metabolism by [H+]: Sarcoplasmic reticulum of skeletal and cardiac muscle, Biochem Biophys Res Commun 41:830 (1970).PubMedCrossRefGoogle Scholar
  30. 30.
    S. McLaughlin, Salicylates and phospholipid bilayer membranes, Nature 243:234 (1973).PubMedCrossRefGoogle Scholar
  31. 31.
    F. Ricciopo Neto and T. Narahashi, Ionic mechanism of the salicylate block of nerve conduction, J Pharmacol Exp Ther 199:454 (1976).Google Scholar
  32. 32.
    F. Zorzato, P. Volpe, E. Damiani, D. Quaglino Jr. and A. Margreth, Terminal cisternae of denervated rabbit skeletal muscle: Alterations of functional properties of Ca2+ release channels, Am J Physiol 26:C504 (1989).Google Scholar
  33. 33.
    A. Margreth, G. Salviati, S. Di Mauro and G. Turati, Early biochemical consequences of denervation in fast and slow skeletal muscle and their relationship to neural control over muscle differentiation, Biochem J 126:1099 (1972).PubMedGoogle Scholar
  34. 34.
    S. T. Ohnishi, S. Taylor and G. A. Gronert, Calcium-induced Ca2+ from sarcoplasmic reticulum of pigs susceptible to malignant hyperthermia, FEBS Lett 161:103 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Roberto Takashi Sudo
    • 1
  • Guilherme Suarez-Kurtz
    • 1
  1. 1.Departamento de Farmacologia Basica e ClinicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations