Skip to main content

Interactions of Volatile Anesthetics and Reactive Oxygen Intermediates on Vascular Smooth Muscle

  • Chapter
Mechanisms of Anesthetic Action in Skeletal, Cardiac, and Smooth Muscle

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 301))

Abstract

Reactive oxygen intermediates (ROIs, also referred to as oxygen-derived free radicals or reactive oxygen metabolites) have been implicated in several physiological and pathological processes.1–3 In particular, they have been reported to be associated with several vascular abnormalities, including those that occur during hypertension,4 reperfusion injury,5 transplant rejection,3 inflammation, premature aging,6 radiation injury, diabetes7 and endotoxic shock.8 An increase in PaO2, especially after hypoxia, is a major stimulus for production of ROIs.9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Feher, G. Csomos, A. Vercckei, “Free Radical Reactions in Medicine,” Springer-Verlag, Berlin (1985).

    Google Scholar 

  2. G. M. Rubanyi, Vascular effects of oxygen derived free radicals. Free Radical Biol Med 4:107–120 (1988).

    Article  CAS  Google Scholar 

  3. D. A. Parks, G. B. Bulkley, and D. N. Granger, Role of oxygen free radicals in shock, ischemia and organ preservation, Surgery 94:428–431 (1983).

    PubMed  CAS  Google Scholar 

  4. E. P. Wei, H. A. Kontos, C. W. Christman, D. S. Dewitt and J. T. Povlishock, Superoxide generation and reversal of acetylcholine induced cerebral arteriolar dilation after acute hypertension, Circ Res 57:781–787 (1985).

    PubMed  CAS  Google Scholar 

  5. R. J. Korthius, J. K. Smith and D. L. Carden, Hypoxie reperfusion attenuates postischemic microvascular injury, Am J Physiol 256:H315–H319 (1989).

    Google Scholar 

  6. W. A. Pryor, Oxy-radicals and related species: Their formation, lifetimes, and reactions, Ann Rev Physiol 48:657–667 (1986).

    Article  CAS  Google Scholar 

  7. P. K. Ganguly, K. S. Dhalla, I. R. Innes, R. E. Beamish, N.J. Dhalla, Altered norepincphrine turnover and metabolism in diabetic cardiomyopathy, Circ Res 59:684–693 (1986).

    PubMed  CAS  Google Scholar 

  8. K. McKechnie, B. Furman, and J. Parratt, Modification by oxygen free radical scavengers of the metabolic and cardiovascular effects of endotoxin infusion in conscious rats, Circ Shock 19:429–439 (1986).

    PubMed  CAS  Google Scholar 

  9. J. M. McCord, Oxygen-derived free radicals in postischemic tissue, N Engl J Med 312:159–163 (1985).

    Article  PubMed  CAS  Google Scholar 

  10. B. A. Macleod, P. Augereau, and M. J. A. Walker, Effects of halothane anesthesia compared with fentanyl anesthesia and no anesthesia during coronary ligation in rats, Anesthesiology 58:44–52 (1983).

    Article  PubMed  CAS  Google Scholar 

  11. J. Dolman and D. V. Godin, Myocardial ischaemic/reperfusion injury in the anaesthetized rabbit: Comparative effects of halothane and isoflurane, Can Anaesth Soc J 33:443–452 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. D. C. Warltier, M. H. Al-Wathiqui, J. P. Kampine, W. T. Schmeling, Recovery of contractile function of stunned myocardium in chronically instrumented dogs is enhanced by halothane or isoflurane, Anesthesiology 69:552–565 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. S. Hoka, Z. J. Bosnjak, J. P. Kampine, Halothane inhibits calcium accumulation following myocardial ischemia and calcium paradox in guinea pig hearts, Anesthesiology 67:197–202 (1987).

    Article  PubMed  CAS  Google Scholar 

  14. W. Freas, J. L. Hart, D. Golighlly, H. McClure, and S. M. Muldoon, Contractile properties of isolated vascular smooth muscle after photoradiation, Am J Physiol 256:H655–H664 (1989).

    PubMed  CAS  Google Scholar 

  15. S. M. Muldoon, P. M. Vanhoutte, R. R. Lorenz and R.A. Van Dyke, Venomotor changes caused by halothane acting on the sympathetic nerves, Anesthesiology 43:41–48 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. W. Freas, J. L. Hart, D. Golightly, H. McClure, D. Rodgers, and S. M. Muldoon, Vascular interactions of calcium and reactive oxygen intermediates following photoradiation, J Cardiovasc Pharmacol 17:27–35 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. R. A. Van Dyke and C. L. Wood, Binding of radioactivity from 14C-labcled halothane in isolated perfused rat livers, Anesthesiology 38:328–332 (1973).

    Article  PubMed  Google Scholar 

  18. V. L. Kubic and M. W. Anders, Mechanism of the microsomal reduction of carbon tetrachloride and halothane, Chem Biol Interact 34:201–207 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. J. L. Plummer, A. L. J. Beckwith, F. N. Bastin, J. F. Adams, M. J. Cousins, P. Hall, Free radical formation in vivo and hepatotoxicity due to anesthesia with halothane, Anesthesiology 57:160–166 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. T. L. Jang, B. A. Macleod and M. J. A. Walker, Effects of halogenated hydrocarbon anesthetics on responses to ligation of a coronary artery in chronically prepared rats, Anesthesiology 59:309–315 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. M. J. Rice, J. A. Hjelmhaug, J. H. Southard, The effect of halothane, isoflurane, and vcrapamil on ischemic-isolated rabbit renal tubules, Anesthesiology 71:738–743 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. P. J. Simpson, J. K. Mickelson and B. R. Lucchesi, Radical scavengers in myocardial ischemia, Fed Proc 46:2413–2421 (1987).

    PubMed  CAS  Google Scholar 

  23. S. W. Werns, M. J. Shea, E. W. Driscoll, C. Cohen, G.D. Abrams, B. Pitt, B. R. Lucchesi, The independent effects of oxygen radical scavengers on canine infarct size: Reduction by Superoxide dismutase but not catalase, Circ Res 56:895–898 (1985).

    PubMed  CAS  Google Scholar 

  24. M. L. Myers, R. Bolli, R. F. Lekich, C. J. Hartley, R. Roberts, Enhancement of recovery of myocardial function by oxygen free-radical scavengers after reversible regional ischemia, Circulation 72:915–921 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Freas, W., Llave, R., Hart, J., Golightly, D., Nagel, J., Muldoon, S. (1991). Interactions of Volatile Anesthetics and Reactive Oxygen Intermediates on Vascular Smooth Muscle. In: Blanck, T.J.J., Wheeler, D.M. (eds) Mechanisms of Anesthetic Action in Skeletal, Cardiac, and Smooth Muscle. Advances in Experimental Medicine and Biology, vol 301. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5979-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5979-1_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5981-4

  • Online ISBN: 978-1-4684-5979-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics