Cerebral Vascular Responses to Anesthetics

  • Noel Flynn
  • Nediljka Buljubasic
  • Zeljko J. Bosnjak
  • John P. Kampine
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 301)


The volatile anesthetics, halothane and isoflurane, cause cerebral vasodilation, especially at concentrations required to induce deep planes of anesthesia. Furthermore, most,1,2,3 but not all,4,5 studies in animals have demonstrated that isoflurane causes less cerebral vasodilation than halothane. However, low concentrations of either volatile anesthetic do not appear to affect the cerebral blood flow (CBF). Manohar and Parks6 demonstrated that CBF in swine models was not significantly altered at 1 MAC isoflurane. Similar observations were made by Cucchiara et al. 1 in dogs. Murphy et al. 7 reported no change in CBF in humans receiving 0.6 MAC halothane or 1.1 MAC isoflurane.


Cerebral Blood Flow Middle Cerebral Artery Volatile Anesthetic Calcium Channel Current Canine Coronary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. F. Cucchiara, R. A. Theye and J. D. Michenfcldcr, The effects of isoflurane on canine cerebral metabolism and blood flow, Anesthesiology 40:571–574 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    R. Y. Chen, F. C. Fan, R. D. Carlin, G. B. Schucssler and S. Chien, Comparison of regional cerebral blood flow during isoflurane and halothane induced hypotension, Anesthesiology 61:A21 (1984).CrossRefGoogle Scholar
  3. 3.
    J. C. Drummond, M. M. Todd and M. S. Serieller, A comparison of the intrinsic cerebral vasodilating potencies of halothane and isoflurane in the New Zealand white rabbit, Anesthesiology 61:A364 (1984).CrossRefGoogle Scholar
  4. 4.
    E. H. Stulken Jr, J. H. Milde, J. D. Michenfelder and J. H. Tinker, The non-linear responses of cerebral metabolism to low concentrations of halothane, enflurane, isoflurane, and thiopental, Anesthesiology 46:28–34 (1977).CrossRefGoogle Scholar
  5. 5.
    T. D. Hansen, D. S. Warner, M. M. Todd, L. J. Vust and D. C. Trawick, Distribution of cerebral blood flow during halothane versus isoflurane anesthesia in rats, Anesthesiology 69:332–337 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Monahar and C. Parks, Regional distribution of brain and myocardial perfusion in swine while awake and during 1.0 and 1.5 MAC isoflurane anaesthesia produced without or with 50% nitrous oxide, Cardiovasc Res 18:344–353 (1984).CrossRefGoogle Scholar
  7. 7.
    F. L. Murphy Jr, E. M. Kennel, R. E. Johnstone, P. L. Lief, D. R. Jobes, B. M. Tompkins, B. B. Gutsche, M. G. Behar and J. Wallman, The effect of enflurane, isoflurane and halothane on cerebral blood flow and metabolism in man In: “Abstracts of Scientific Papers: Annual Meeting of the ASA” (1974) pp. 61–62.Google Scholar
  8. 8.
    R. F. Furchgott and J. V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine, Nature 288:373–376 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    R. F. Furchgott, Studies on relaxation of rabbit aorta by sodium nitrite: The basis for the proposal that the acid-activatable inhibitory factor from bovine retractor penis is inorganic nitrite and the endothelium-derived relaxing factor is nitric oxide, in: “Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomie Nerves, and Endothelium,” P. M. Vanhoutte, ed., Raven Press, New York (1988) pp. 401–414.Google Scholar
  10. 10.
    L. J. Ignarro, R. E. Byrns and K. S. Wood, Biochemical and pharmacological properties of endothelium-derived relaxing factor and its similarity to nitric oxide radical, in: “Vasodilatation: Vascular Smooth Muscle, Peptides, Autonomie Nerves, and Endothelium,” P. M. Vanhoutte, ed., Raven Press, New York (1988) pp. 427–435.Google Scholar
  11. 11.
    H. A. Kontos, E. P. Wei, J. T. Povlishock and C. W. Christman, Oxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats, Circ Res 55:295–303 (1984).PubMedGoogle Scholar
  12. 12.
    S. M. Muldoon, J. L. Hart, K. A. Bowen and W. Freas, Attenuation of endothelium mediated vasodilation by halothane, Anesthesiology 68:31–37 (1988).PubMedCrossRefGoogle Scholar
  13. 13.
    D. J. Stone and R. A. Johns, Endothelium-dependent effects of halothane, enflurane, and isoflurane on isolated rat aortic vascular rings, Anesthesiology 71:126–132 (1989).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Blaise, J. C. Sill, M. Nugent, R. A. Van Dyke and P. M. Vanhoutte, Isoflurane causes endothelium-dependent inhibition of contracile responses of canine coronary arteries, Anesthesiology 67:513–517 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    Z. J. Bosnjak, F. D. Supan and N. J. Rusch, The effects of halothane, enflurane and isoflurane on calcium current in isolated canine ventricular cells, Anesthesiology 74:340–345 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Ikemoto, A. Yatani, H. Arimura and J. Yoshitake, Reduction of slow inward current of isolated rat ventricular cells by thiamylal and halothane, Acta Anaesthesiol Scand 29:583–586 (1985).PubMedCrossRefGoogle Scholar
  17. 17.
    E. J. Marco, G. Balfagen, M. Solaiccs, C. F. Sanchez-Fcrrar and J. Marin, Serotonergic innervation of cat cerebral arteries, Brain Res 338:137–139 (1985).PubMedCrossRefGoogle Scholar
  18. 18.
    E. Muller-Schweinitzer and G. Engel, Evidence for mediation by 5HT2 receptors of 5-hydroxytryptamine-induced contraction of canine basilar artery, Naunyn Schmeidebergs Arch Pharmacol 324:287–292 (1983).CrossRefGoogle Scholar
  19. 19.
    R. F. Furchgott, P. D. Cherry and J. V. Zawadzki, Endothelium dependent relaxation of arteries by acetylcholine, bradykinin and other agents, in: “Vascular Neuroeffector Mechanisms: 4th International Symposium,” J. Bevan et al., eds., Raven Press, New York (1983) pp 37–43.Google Scholar
  20. 20.
    J. G. De Mey, M. Claeys and P. M. Vanhoutte, Endothelium-dependent inhibitory effects of acetylcholine adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery, J Pharmacol Exp Therap 222:166–173 (1982).Google Scholar
  21. 21.
    R. M. Palmer, D. D. Rees, D. S. Ashton and S. Moncada, L-Arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation, Biochem Biophys Res Commun 153:1251–1256 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    D. D. Rees, R. M. Palmer, H. F. Hodson and S. Moncada, A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation, Br J Pharmacol 96:418–424 (1989).PubMedGoogle Scholar
  23. 23.
    D. S. Houston and P. M. Vanhoutte, Comparison of serotonergic receptor subtypes on the smooth muscle and endothelium of the canine coronary artery, J Pharmacol Exp Therap 244:1–10 (1988).Google Scholar
  24. 24.
    M. J. Halsey, Physicochemical properties of inhalational anaesthetics, in: “General Anesthesia,” Vol 1, T. C. Gray, J. E. Utting and J. F. Nunn, eds., Butterworths, London (1980) pp. 45–65.Google Scholar
  25. 25.
    J. C. Drummond, M. M. Todd and H. M. Shapiro, Cerebral blood flow autoregulation in the cat during anesthesia with halothane and isoflurane, Anesthesiology 59:A305 (1983).CrossRefGoogle Scholar
  26. 26.
    R. F. Hickey and E. I. Eger, Circulatory pharmacology of inhaled anesthetics, in: “Anesthesia,” R. D. Miller, ed., Churchill Livingstone, New York (1986) pp 649–666.Google Scholar
  27. 27.
    S. F. Vatner and N. T. Smith, Effects of halothane on left ventricular function and distribution of regional blood flow in dogs and primates, Circ Res 34:155–167 (1974).PubMedGoogle Scholar
  28. 28.
    C. Lynch III, Are volatile anesthetics really calcium entry blockers? Anesthesiology 61:644–646 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    H. L. Price and S. T. Ohnishi, Effects of anesthetics on the heart, Fed Proc 39:1575–1579 (1980).PubMedGoogle Scholar
  30. 30.
    J. Y. Su and J. G. Bell, Intraccllular mechanism of action of isoflurane and halothane on striated muscle of the rabbit, Anesih Analg 65:457–462 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Noel Flynn
    • 1
  • Nediljka Buljubasic
    • 1
  • Zeljko J. Bosnjak
    • 1
  • John P. Kampine
    • 1
  1. 1.Department of AnesthesiologyMedical College of WisconsinMilwaukeeUSA

Personalised recommendations