Skip to main content

The Assembly of the HIV-1 Env Glycoprotein into Dimers and Tetramers

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 300))

Abstract

The envelope (env) glycoprotein of human immunodeficiency virus 1 (HIV-1), initially synthesized as a precursor molecule termed gp160, is cleaved into two noncovalently associated subunits prior to delivery to the plasma membrane. We have studied the oligomeric structure of this protein using chemical cross-linking, velocity gradient sedimentation, and SDS-resistance. We find that gp160 forms stable homodimers after synthesis. After cleavage to gp120/gp41 the molecule becomes less stable to detergent solubilization and centrifugation but remains dimeric. Interactions between the 129 amino terminal residues in the ectodomains of adjoining gp41 subunits are both sufficient and necessary for assembly. In addition, tetramers composed of two dimers were also formed. Larger structures were not observed. The tetrameric paramyxovirus F protein, which has structural and functional similarities to the HIV-1 env protein, also forms a dimer of dimers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Dalgleish, P.C.L. Beverley, P.R. Clapham, D.H. Crawford, M.F. Greaves, and R.A. Weiss, The CD4 (T4) antigen is an essential component of the receptor of the AIDS retrovirus, Nature 312:763 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. D. Klatzman, E. Champagne, S. Chamaret, J. Gruest, D. Guetard, T. Hercend, J.C. Gluckman, and L. Montagnier, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature 312:767 (1984).

    Article  Google Scholar 

  3. J.S. McDougal, A. Mawie, S. Cort, J. Nicholson, G.D. Cross, J.A. Scheppler-Campbell, D. Hicks, and J. Sligh, Cellular tropism of the human retrovirus HTLVIII/LAV. 1. Role of T-cell activation and expression of the T4 antigen, J. Immunol. 135:3151 (1985).

    PubMed  CAS  Google Scholar 

  4. J.S. McDougal, M.S. Kennedy, J.M. Sligh, S.P. Cort, A. Mawle, and J.K.A. Nicholson, Binding of HTLV-III/LAV to T4+ T cells by a complex of the llOK viral protein and the T4 molecule, Science 231:383 (1986).

    Article  Google Scholar 

  5. P.J. Maddon, A.G. Dalgleish, J.S. McDougal, P.R. Clapham, R.A. Weiss, and R. Axel, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain, Cell 47:333 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. B.S. Stein, S.D. Gowda, J.D. Lifson, R.C. Penhallow, K.G. Bensch and E.G. Engelman, pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, Cell 49:659 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. M. Kowalski, J. Potz, L. Basiripour, T. Dorfman, W.C. Goh, E. Terwillger, A. Dayton, C. Rosen, W. Haseltine and J. Sodroski, Functional regions of the envelope glycoprotein of human immunodeficiency virus type I, Science 237:1351 (1987).

    Article  PubMed  CAS  Google Scholar 

  8. J.S. Allan, J.E. Coligan, F. Barin, M.F. McLane, J.G. Sodroski, C. A. Rosen, W.A. Haseltine, W.A. Lee, and M. Essex, Major glycoprotein antigens that induce antibodies in AIDS patients are encoded by HTLV-III, Science 228:1091 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. F.D. Veornese, A.L. De Vico, T.D. Copeland, S. Oroszlan, R.C. Gallo, and M.G. Sarngadharan, Characterization of gp41 as the transmembreane protein coded by the HTLV-III/LAV envelope gene, Science 229:1402 (1985).

    Article  Google Scholar 

  10. C. Fennie and L. Lasky, Model for intracellular folding of human immunodeficiency virus type 1 gp120, J. Virol. 63:639 (1989).

    PubMed  CAS  Google Scholar 

  11. R.L. Willey, J.S. Bonifacino, B.J. Potts, M.A. Martin and R.D. Klausner, Biosynthesis, cleavage and degradation of the human immunodeficiency virus 1 envelope glycoprotein gpl60, Proc. Natl. Acad. Sci. 85:9580 (1988).

    Article  PubMed  CAS  Google Scholar 

  12. J.M. McCune, L.B. Rabin, M.B. Feinberg, M. Lieberman, J.C. Kosek, G.R. Reyes, and I.L. Weissman, Endoproteolytic cleavage of gp160 is required for the activation of human immunodeficiency virus, Cell 53:55 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. J. White, M. Kielian, and A. Helenius, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16:151 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. T. Stegmann, R.W. Doms, and A. Helenius, Protein-mediated membrane fusion, Annu. Rev. Biophys. Chem. 18:187 (1989).

    Article  CAS  Google Scholar 

  15. J.K. Rose and R.W. Doms, Regulation of protein export from the endoplasmic reticulum, Ann. Rev. Cell Biol. 4:257 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. S.M. Hurtley and A. Helenius, Protein oligomerization in the endoplasmic reticulum, Annu. Rev. Cell Biol., in press.

    Google Scholar 

  17. J. Lippincott-Schwartz, J.S Bonifacino, L.C. Yuan and R.D. Klausner, Degradation from the endoplasmic reticulum: Disposing of newly synthesized proteins, Cell 54:209 (1988).

    Article  PubMed  CAS  Google Scholar 

  18. L. Ratner, W. Haseltine, R. Patarca, K.J. Livak, B. Starchch, S.F. Josephs, E.R. Doran, J.A. Rafalski, E.A. Whitehorn, K. Baumesiter, L. Ivanoff, S.R. Petteway, M.L. Pearson, J.A. L.J. Takemoto, C.F. Fox, F.C. Jensen, J.H. Elder, and R.A. Lerner, Nearest-neighbor interactions of the major RNA tumor virus glycoprotein on cell surfaces, Proc. Natl. Acad. Sci. 75:3644 (1978).

    Article  Google Scholar 

  19. S. Chakrabarti, M. Robert-Guroff, F. Wong-Stahl, R.C. Gallo, and B. Moss, Expression of the HTLV-III envelope gene by a recombinant vaccinia virus, Nature 320:535 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. P. Earl and B. Moss, in preparation.

    Google Scholar 

  21. CR. McEwen, Tables for estimating sedimentation through linear concentration gradients of sucrose solution, Anal. Biochem. 20:114 (1967).

    Article  PubMed  CAS  Google Scholar 

  22. R.G. Martin and B.N. Ames, A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J. Biol. Chem. 236:1372 (1961).

    PubMed  CAS  Google Scholar 

  23. R.W. Doms and A. Helenius, Quaternary structure of influenza virus hemagglutnin after acid treatment, J. Virol. 60:833 (1986).

    PubMed  CAS  Google Scholar 

  24. R.W. Doms, D.S. Keller, A. Helenius and W.E. Balch, Role for ATP in regulating the assembly and transport of Vesicular Stomatitis virus G protein trimers, J. Cell Biol. 105:1957 (1987).

    Article  PubMed  CAS  Google Scholar 

  25. J.D. Lifson, M.B. Feinberg, G.R. Reyes, L. Babins, B. Bonapour, S. Chakrabarti, B. Moss, F. Wong-Stahl, D.C. Steiner, and E.G. Engelman, Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein, Nature 323:725 (1987).

    Article  Google Scholar 

  26. R.W. Doms, Oligomerization and protein transport, Meth. Enzymology, in press.

    Google Scholar 

  27. M.-A. Rey, B. Krust, A.G. Laurent, L. Montagnier and A.G. Hovanessian, Characterization of human immunodeficiency virus type 2 envelope glycoproteins: Dimerization of the glycoprotein precursor during processing, J. Virol. 63:647 (1989).

    PubMed  CAS  Google Scholar 

  28. M. Silverberg and V.T. Marchesi, The anomolous electrophoretic behavior of the major sialoglycoprotein from the human erythrocyte, J. Biol. Chem. 253:95 (1978).

    PubMed  CAS  Google Scholar 

  29. O. Sechoy, J.R. Philippot, and A. Bienvenue, F protein-F protein interaction within the Sendai virus identified by native bonding or chemical cross linking, J. Biol. Chem. 262:11519 (1987).

    PubMed  CAS  Google Scholar 

  30. M.N. Waxham, D.C. Merz, and J.S. Wolinsky, Intracellular maturation of mumps virus hemagglutinin-neuraminidase glycoprotein: Conformational changes detected with monoclonal antibodies, J. Virol. 59:1186 (1986).

    Google Scholar 

  31. A. Pinter, WJ. Honnen, S.A. Tilley, C. Bona, H. Zaghouani, M.K. Gorny, and S. Zolla-Pazner, Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1, J. Virol. 63:2674 (1989).

    PubMed  CAS  Google Scholar 

  32. D. Einfeld and E. Hunter, Oligomeric structure of a prototype retrovirus glycoprotein, Proc. Natl. Acad. Sci. 85:8688 (1988).

    Article  PubMed  CAS  Google Scholar 

  33. R.W. Doms, A. Ruusala, C. Machamer, J. Helenius, A. Helenius and J.K. Rose, Differential effects of mutations in three domains on folding, quaternary structure, and intracellular transport of VSV G protein, J. Cell Biol. 107:89 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. C.E. Machamer, and J.K. Rose. Vesicular stomatitis virus G proteins with altered glycosylation sites display temperature-sensitive intracellular transport and are subject to aberrant intermolecular disulfide bonding, J. Biol. Chem. 263:5955 (1988).

    PubMed  CAS  Google Scholar 

  35. C.S. Copeland, K.-P. Zimmer, K.R. Wagner, G.A. Healey, I. Mellman and A. Helenius, Folding, trimerization and transport are sequential events in the biogenesis of influenza virus hemagglutinin, Cell 53:197 (1988).

    Article  PubMed  CAS  Google Scholar 

  36. C.S. Copeland, R.W. Doms, E.M. Bolzau, R.G. Webster and A. Helenius, Assembly of influenza hemagglutinin trimers and its role in intracellular transport, J. Cell Biol. 103:1179 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. M.-J. Gething, K. McCammon, and J. Sambrook, Expression of wild-type and mutant forms of influenza hemagglutinin: The role of folding in intracellular transport, Cell 107:939 (1986).

    Article  Google Scholar 

  38. P. Gallagher, J. Henneberry, I. Wilson, J. Sambrook, and M.-J. Gething, Addition of carbohydrate side-chains at novel sites on influenza virus hemagglutinin can modulate the folding, transport, and activity of the molecule, J. Cell Biol. 107:2059 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. I. Wilson, J. Skehel, and D.C. Wiley, Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3Å resolution, Nature 292:366 (1981).

    Article  Google Scholar 

  40. R.H. Vogel, S.W. Provencher, C.-M. von Bonsdorff, M. Adrian, and J. Dubochet, Envelope structure of Semliki Forest virus reconstituted from cryoelectron micrographs, Nature 320:533 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. L.J. Takemoto, C.F. Fox, F.C. Jensen, J.H. Elder, and R.A. Lerner, Nearest-neighbor interactions of the major RNA tumor virus glycoprotein on cell surfaces, Proc. Natl. Acad. Sci. 75:3644 (1978).

    Article  PubMed  CAS  Google Scholar 

  42. A. Pinter and E. Fleissner, Structural studies of retroviruses: Characterization of oligomeric complexes of murine and feline leukemia virus envelope and core components formed upon cross-linking, J. Virol. 30:157 (1979).

    PubMed  CAS  Google Scholar 

  43. J. Racevskis and N.H. Sarkar, Murine mammary tumor virus stuctural protein interactions: Formation of oligomeric complexes with cleavable cross-linking agents, J. Virol. 35:937 (1980).

    PubMed  CAS  Google Scholar 

  44. H.R. Gelderbloom, H. Reupke, and G. Pauli, Loss of envelope antigens of HTLV-III/LAV, a factor in AIDS pathogenesis? Lancet ii:1016 (1985).

    Article  Google Scholar 

  45. B. Chesebro and K. Wehrly, Development of a sensitive quantitative focal assay for human immunodeficiency virus infectivity, J. Virol. 62:3779 (1988).

    PubMed  CAS  Google Scholar 

  46. A. Helenius and K. Simons, Solubilization of membranes by detergents, Biochim. Biophys. Acta 415:29 (1975).

    PubMed  CAS  Google Scholar 

  47. C. Tanford and J.A. Reynolds, Characterization of membrane proteins in detergent solutions, Biochim. Biophys. Acta, 457:133 (1976).

    PubMed  CAS  Google Scholar 

  48. M. Schawaller, G.E. Smith, J. J. Skehel, and D.C. Wiley, Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV, Virology 172:367 (1989).

    Article  PubMed  CAS  Google Scholar 

  49. M.A.K. Markwell and C.F. Fox, Protein-protein interactions within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking, J. Virol. 33:152 (1980).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Doms, R.W., Earl, P.L., Moss, B. (1991). The Assembly of the HIV-1 Env Glycoprotein into Dimers and Tetramers. In: Düzgüneş, N. (eds) Mechanisms and Specificity of HIV Entry into Host Cells. Advances in Experimental Medicine and Biology, vol 300. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5976-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5976-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5978-4

  • Online ISBN: 978-1-4684-5976-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics