Skip to main content

Thyroid Hormone Control of Brain and Motor Development: Molecular, Neuroanatomical, and Behavioral Studies

  • Chapter
Advances in Perinatal Thyroidology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 299))

Abstract

Thyroid hormones, T3 and T4, have been shown to play significant but poorly understood roles in development and differentiation of rodent and human brain(Lauder, 1989; Legrand, 1982–83; Stein et al, 1989a; 1991a,d; Eayrs, 1968; Morreale de Escobar et al, 1984; Garza et al, 1988; Ruiz-Marcos, 1989; Nunez et al, 1989). Hypothyroidism leads to molecular(Stein et al, 1989a,c; 1991a; Nunez et al, 1989; Hendrich et al, 1987), neuroendocrinological(Noguchi et al, 1986, Bakke et al, 1975, Stein et al, 1989b, Porterfield et al, 1981), neuroanatomical(Lauder et al, 1986; Lauder, 1989; Ruiz-Marcos, 1989; Eayrs, 1955; Garza et al, 1988; Morreale de Escobar et al, 1989; Marc et al, 1985; Legrand, 1982–83; Rami et al, 1986b; Narayanan et al, 1985; Marinesco, 1924; Lotmar, 1928; Rosman, 1975), behavioral and neuropsychological(Adams et al, 1989,1991; Anthony et al, 1991; Eayrs, 1968; Davenport et al, 1976; Klein, 1985; Rovet et al, 1987; Rovet, 1989; Man, 1971; Boyages et al, 1988; Pharoah,1984), and neurological abnormalities(Chaouki et al, 1989; Boyages et al, 1988; Delong et al, 1985; Nelson et al, 1986; Macfaul et al; 1978; Stein et al, 1991d, Rochiccioli et al, 1989) in the developing brain. Specifically, disorders of neuronal process growth and connectivity are noted neuroanatomically and motor syndromes involving motor cortex and pyramidal tracts are commonly observed in hypothyroid humans and rodents. These neurological and neuropathological abnormalities may be predicated on abnormalities in the cytoskeletal structures and in their molecular components. The cytoskeleton is a primary target for thyroid hormone in euthyroid and hypothyroid brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. M., Stein, S. A., Palnitkar, M., Anthony, A., and Gerrity, L., 1989, Evaluation and Characterization of the hyi/hit Hypothyroid Mouse I: Somatic and Behavioral Studies, Neuroendo., 49: 138–143.

    Article  CAS  Google Scholar 

  • Adams, P. M. and Stein, S. A., Evaluation and characterization of the hyi/hit mouse III: Abnormalities in Primitive Corticospinal Reflexes and Sensory Behavior, Submitted, 1991.

    Google Scholar 

  • Adkison, L. R., Taylor, S., and Beamer, W. G., 1989, Mutant gene-induced disorders of structure, function and thyroglobulin synthesis in congenital goitre (cog/cog) in mice, J. Endocrin., 126: 51–58.

    Article  Google Scholar 

  • Allpress, S. J., and Pollock, M., 1986, Morphological and functional effects of triiodothyronine on regenerating peripheral nerve, Exp. Neurol., 91: 382–91.

    Article  PubMed  CAS  Google Scholar 

  • Almazan, G., Honegger, P., and Matthieu, J. M., 1975, Triiodothryoinine stimulation of oligodendroglial differentiation and myelination, Dev. Neuro., 7: 45–54.

    Article  Google Scholar 

  • Anduze, A. L., and Merritt, J. C., 1980, Optic nerve hypoplasia with hyperthyroidism and third nerve palsy, Ann. Opthalmology, 12: 1170–1173.

    CAS  Google Scholar 

  • Bakke, J. L., Lawrence, N. L., Robinson, S., and Bennett, J., 1975, Endocrine studies of the untreated progeny of thyroidectomized rats, Pediat. Rest, 9: 742–748.

    Article  CAS  Google Scholar 

  • Beamer, W. G., Eicher, E. M., Maltais, L. J., and Southard, J. L., 1981, Inherited primary hypothyroidism in mice, Science, 212: 61–62.

    Article  PubMed  CAS  Google Scholar 

  • Beamer, W. G., Maltais, L. J., DeBaets, M. H., and Eicher, E. M., 1987, Inherited congenital goiter in mice, Endocrinol., 120: 838–840.

    Article  CAS  Google Scholar 

  • Beamer, W. G. and Cresswell, L. A., 1982, Defective thyroid ontogenesis in fetal hypothyroid (lj) mice, Anat. Rec., 202: 387–393.

    Article  PubMed  CAS  Google Scholar 

  • Beierwaltes, W. H., 1959, Instituitionalized cretins in the state of Michigan, Michigan Med., 58: 1077–1095.

    CAS  Google Scholar 

  • Benecke, R., 1990, Clumsiness in corticospinal tract lesions, Motor Control, Am. Acad. of Neurol., 47–63.

    Google Scholar 

  • Benjamin, S., Cambray-Deakin, MA, and Burgoyne, R.D., 1988, Effect of hypothyroidism on the expression of three microtubule-associated proteins (1A, 1B, and 2) in developing rat cerebellum, Neurosci, 27: 931–939.

    Article  CAS  Google Scholar 

  • Benowitz, L. I. and Routtenberg, A., 1987, A membrane phosphoprotein associated with neural development, axonal regeneration, phospholipid metabolism, and synaptic plasticity, TINS, 10: 527–532.

    CAS  Google Scholar 

  • Bernal, J. and Pekonen, F., 1984, Ontogenesis of the nuclear 3,5,3’-triiodothyronine receptor in the human fetal brain, Endocrinol., 11: 677–679.

    Article  Google Scholar 

  • Bradley, D. J., Young, W. S., III, Weinberger, C., 1989, Differential expression of and thyroid hormone receptor genes in rat brain and pituitary, Proc. Natl. Acad. Sci., 86: 1–6.

    Article  Google Scholar 

  • Birrell, J., Frost, G. J., and Parkin, J. M., 1987, The development of children with congenital hypothyroidism, Dev. Med. Child Neurol., 25: 512–519.

    Article  Google Scholar 

  • Black, M. M. and Lasek, R. J., 1979, Axonal transport of actin: Slow component b is the principal source of actin for the axon, Brain Res., 171: 401–413.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, G. S., Schoenfeld, T. A., and Vallee, R. B., 1984, Widespread distribution of the major polypeptide component of MAP 1 (microtubule-associated protein 1) in the nervous system, J. Cell., Biol., 98: 320–330.

    Article  CAS  Google Scholar 

  • Bloom, G. S. and Vallee, R. B., 1983, Association of microtubule-associated protein 2 (MAP2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol., 96: 1523–1531.

    Article  PubMed  CAS  Google Scholar 

  • Bond, J. and Farmer, S., 1983, Regulation of tubulin and actin mRNA production in rat brain: Expression of a new tubulin mRNA with development, Mol. Cell. Biol., 3: 1333–1342.

    PubMed  CAS  Google Scholar 

  • Boyages, S. C., Halpern, J. P., Maberly, G. F., Eastman, C. J., Morris, J., Collins, J., Jupp, J. J., Chen-en, J., Zheng-Hua, W., and Chuan-Yi, Y., 1988, A comparative study of neurological and myxedematous endemic cretinism in Western China, J. Clin. Endocrin. Metabolism, 67: 1262–1271.

    Article  CAS  Google Scholar 

  • Boyages, S. C., Collins, J. K., Maberly, G. F., Jupp, J. J., Morris, J., and Eastman, C. J., 1989, Iodine deficiency impairs intellectual and neuromotor development in apparently-normal persons: A study of rural inhabitants of north-central China, Med. J. of Australia, 150: 676–77.

    CAS  Google Scholar 

  • Brady, S. T., 1985, Axonal transport: Methods and applications, in:“Neuromethods I: General Methods,” Boulton, A., Baker, G., eds., Clifton, NJ, Humana Press.

    Google Scholar 

  • Brady, S. T., 1988, Cytotypic specialization of the neuronal cytoskeleton and the cytomatriac Implications for neuronal growth and regeneration, in: “Cellular and Molecular Aspects of Neural Development and Regeneration,” A. Goria, et al., eds., Springer-Verlag, New York.

    Google Scholar 

  • Brady, S. T. and Black, M. M., 1986, Axonal transport of microtubule proteins: Cytotypic variation of tubulin and MAPs in neurons, Ann. NY Acad. Sci., 466: 199–217.

    Google Scholar 

  • Brady, S. T., Lasek, R. J., 1982a, The slow components of axonal transport: Movements, compositions and organization, in: “Axoplasmic Transport,” Weiss, D. G., ed., Berlin, Springer-Verlag.

    Google Scholar 

  • Burgoyne, R. D., Cambray-Deakin, M. A., Lewis, S. A., Sarkar, S., and Cowan, N. J., 1988, Differential distribution of ß tubulin isotypes in cerebellum, EMBO. J., 7: 2311–2319.

    Google Scholar 

  • Caviness, V. S., Crandall, J. E., and Edwards, M. A., 1988, The reeler malformation: Implications for neocortical histogenesis, in: “Cerebral Cortex,” A. Peters and E. G. Jones, eds., Plenum Press, New York.

    Google Scholar 

  • Chaouki, M. L., Maoui, R., and Benmiloud, M., 1987, Comparative study of neurological and myxoedematous cretinism associated with severe iodine deficiency, Clin. Endocrinol., 28: 399–408.

    Google Scholar 

  • Chaudhury, S., Chatterjee, D., and Sarkar, P. K., 1985, Induction of brain tubulin by triidothyronine: Dual effect of the hormone on the synthesis and turnover of the protein, Brain Res., 339: 191–194.

    Google Scholar 

  • Christiansen, E. and Melchior, J., 1967, Cerebral palsy: a clinical and neuropathological study, Clin. Dev. Med., 25: 1.

    Google Scholar 

  • Cleveland, D.W., 1989, Autoregulated control of tubulin synthesis in animal cells, Curr. Opinion in Cell Biol., 1: 10–14.

    Google Scholar 

  • Clos, J., Legrand, C., and Legrand, J., 1980, Effects of thyroid state on the formation and early morphological development of Bergmann glia in the developing rat cerebellum, Dev. Neurosci., 3: 199–208.

    Google Scholar 

  • Codaccioni, J. L., Carayon, P., Michel-Bechet, M., Foucault, F., Lefort, G., and Pierron, H., 1980, Congenital hypothyroidism associated with thyrotropin unresponsiveness and thyroid cell membrane alterations, J.Clin. EndocrinoL Metal, 50: 932–937.

    Google Scholar 

  • Corner, C. P. and Norton, S., 1985, Behavioral consequences of perinatal hypothyroidism in postnatal and adult rats, Pharm. Biochem. Behay., 22: 605–611.

    Google Scholar 

  • Conel, J.L., “The postnatal development of the human cerebral cortex,” volumes I-VII, 1939, 1941, 1947, 1951, 1955, 1959, 1963, 1967, Harvard Univ. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Cowan, N. J. and Dudley, L., 1983, Tubulin isotypes and the multigene tubulin families, Intl. Rev Cytl., 85: 147–173.

    Google Scholar 

  • Crandall, J. E. and Caviness, V. S., 1984, Axon strata of the cerebral wall in embryonic mice, Dev Brain Res., 14: 185–195.

    Article  Google Scholar 

  • Crandall, J. E. and Caviness, V. S., 1984, Thalamocortical connections in newborn mice, J. Comp, Neurol., 228: 542–556.

    Google Scholar 

  • Davenport, J. W., 1976, Perinatal hypothyroidism in rats: Persistent motivational and metabolic effects, Dev. Psychobiol., 9: 67–82.

    Google Scholar 

  • Davenport, J. and Dorcey, T., 1972, Hypothyroidism: Learning deficits induced in rats by early exposure to thiouracil, Horm. Behay., 3: 97–112.

    Google Scholar 

  • Davenport, J. W., Gonzalez, L. M., Hennies, R. S., and Hagquist, W. W., 1976, Severity and Timing of Early Thyroid Deficiency as Factors in the Induction of Learning Disorders in Rats, Horm. Behay., 7: 139.

    Google Scholar 

  • Davidoff, R. A., 1990, The pyramidal tract, Neurology, 40: 332–339.

    PubMed  CAS  Google Scholar 

  • de Waegh, S. and Brady, S. T., 1990, Axonal transport of a clathrin uncoating ATPase (HSC70): A role for HSC70 in the modulation of coated vesicle assembly in vivo, J. Neurosci. Res, 23: 433–440.

    Google Scholar 

  • de Waegh, S. and Brady, S. T., 1989b, Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: The trembler as an in vivo model for schwann cell-axon interactions, Neurosci., 10: 1855–1865.

    Google Scholar 

  • Delange F.M., 1989, Endemic cretinism: An overview, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.

    Google Scholar 

  • Delong, G. R., 1989, Observations on the neurology of endemic cretinism, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.

    Chapter  Google Scholar 

  • Delong, G. R., Stanbury, J.B., and Fierro-Benitez, R., 1985, Neurological signs in congenital iodine-deficiency disorder (endemic cretinism), Dev. Med. Child Neurol., 27:317-.

    Google Scholar 

  • Dememes, D., Dechesne, C., LeGrand, C., and Sans, A., 1986, Effects of hypothyroidism on postnatal development in the peripheral vestibular system, Dev. Brain Res., 25: 147–152.

    Google Scholar 

  • Demeyer, W., 1967, Ontogenesis of the rat corticospinal tract, Arch. Neurol., 16:203–211

    Google Scholar 

  • Devries, J.I.P., Visser, G.HA., and Prechtl, H.F.R., 1982, The emergence of fetal behavior I. Quantitative aspects, Early Hum. Devel., 7: 301–322.

    Google Scholar 

  • Diamond, D.J. and Goodman, H.M., 1985, Regulation of growth hormone messenger RNA synthesis by dexamethasone and triiodothyronine transcriptional rate and mRNA stability changes in pituitary tumor cells, J. Molec. Biol., 181: 41–62, 1985.

    Google Scholar 

  • Donatelle, J. M., 1977, Growth of the corticospinal tract and the development of placing reactions in the postnatal rat, J. Comp. Neur., 175: 207–232.

    Google Scholar 

  • Drubin, D., Kobayashi, S., Kellogg, D., and Kirschner, M., 1988, Regulation of microtubule protein levels during cellular morphogenesis in nerve growth factor-treated PC12 cells, J. Cell. Biol., 106: 1583–1591.

    Google Scholar 

  • Drubin, D. G., Feinstein, S. C., Shooter, E. M., and Kirschner, M. W., 1985, Nerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors, J. Cell Biol., 101: 1799–1807.

    Article  PubMed  CAS  Google Scholar 

  • Dumont, J. E„ Vassart, G., and Refetoff, S., 1989, Thyroid disorders, in: “Metabolic Basis of Inherited Diseases,” 6th ed., Scriver, C. R., Beaudet, A. L, Sly, W. S., Valle, D., eds., McGraw Hill, New York.

    Google Scholar 

  • Dussault, J. H., Action of thyroid hormones on brain development, in: “Research in Congenital Hypothyroidism,” F. Delange, D. A. Fisher, and D. Glinoer, eds., Plenum Press, New York, 95–102.

    Google Scholar 

  • Dussault, J. H., Glorieux, J., Letarte, J., Guyda, H., and Morissette, J., 1983, The mental development at 3 years of age of hypothyroid infants detected by the Quebec Screening program, in: “Congenital Hypothyroidism,” J. H. Dussault and P. Walker, eds., M. Dekker, Inc., New York.

    Google Scholar 

  • Dyck P.J., Lambert, E.H., 1970, Polyneuropathy associated with hypothyroidism, J Neuropath Exp Neurol, 24: 631–658.

    Article  Google Scholar 

  • Eayrs, J.T., 1968. Developmental Relationships Between Brain and Thyroid, in: “Endocrinol. and Human Behavior,” R. P. Michael, ed., Oxford University Press, New York.

    Google Scholar 

  • Eayrs, J.T., 1955, The cerebral cortex of normal and hypothyroid rats, Acta Anat., 25: 160–1832.

    Article  PubMed  CAS  Google Scholar 

  • Eayrs, J. T. and Lishman, W. A., 1955, The maturation of behavior in hypothyroidism and starvation, Br. J. Animal Behay., 3: 17–24.

    Google Scholar 

  • Faivre C., Legrand C., and Rabie A., 1984, In purkinje cell dendrites of the young rat, thyroid hormone controls the resistance of microtubules to fixation at low temperature, Int. J. Dev. Neurosci., 2: 427–436.

    Google Scholar 

  • Faivre, C., Legrand, C., and Rabie, A., 1983, Effects of thyroid deficiency and corrective effects of thyroxine on microtubules and mitochondria in cerebellar purkinje cell dendrites of developing rats, Dev. Brain. Res., 3: 21–30.

    Google Scholar 

  • Farmer, S., Robinson, G., Mbangkollo, D., Bond, J., Knight, G., Fenton, M., and Berkowitz, E., 1986, Differential expression of the ß tubulin multigene family during rat brain development, Ann. NY Acad. of Sci., 466: 41–50.

    Google Scholar 

  • Fernyhough, P., Mill, J. F., Roberts, J. L., and Ishii, D. N., 1989, Stabilization of tubulin mRNAs by insulin and insulin-like growth factor I during neurite formation, Mol. Brain Res., 6: 109–120.

    Google Scholar 

  • Fierro-Benitez, R., Cazar, R., Sandoval, H., Fierro-Renoy F., et al, Early correction of iodine deficiency and late effects on psychomotor capabilities and migration in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.

    Google Scholar 

  • Fisher, D. A. and Foley, B. L., 1989, Early treatment of congenital hypothyroidism, Pediatrics, 83: 785–789.

    PubMed  CAS  Google Scholar 

  • Fisher, D. A. and Klein, A. H., 1981, Thyroid development and disorders of thyroid function in the newborn, NEJM, 304: 702–712.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, A. A., 1989, Development of fetal thyroid system control, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.

    Google Scholar 

  • Fox, S. R. and Pfaff, D., 1987, Differential expression within neurons and glia of mRNA encoding a putative thyroid hormone receptQr(cErbA1), Soc. Neurosci. Abstr., 13 (1): 376.

    Google Scholar 

  • Freeman, J. M. and Nelson, K. B., 1988, Intrapartum asphyxia and cerebral palsy, Pediatrics, 82: 240–249.

    PubMed  CAS  Google Scholar 

  • Freund, H. J., 1987, Differential effects of cortical lesions in humans, in: “Motor Areas of the Cerebral Cortex,” R. Porter and C. G. Phillips, eds., A. Wiley-Interscience Publication, New York.

    Google Scholar 

  • Garcia, C. A. and Fleming, R. H., 1977, Reversible corticospinal tract disease due to hyperthyroidism, Arch, Neurol., 34: 647–648.

    Google Scholar 

  • Garner, J. A. and Lasek, R. J., 1981, Clathrin is axonally transported as part of slow component b: The microfilament complex, J. Cell Biol., 88: 172–178.

    Google Scholar 

  • Garza, R., Dussault, J. H., and Puymirat, J., 1988, Influence of triiodothyronine on the morphological and biochemical development of fetal brain acetylcholinesterase-postive neurons cultured in a chemically defined medium, Dev. Br, Res., 43: 287–297.

    Google Scholar 

  • Gerard, C. M., Lefort, A., Christophe, D., Libert, F., Van Sande, J., Dumont, J. E., and Vassart, G., 1989, Control of thyroperoxidase and thyroglobulin transcription by cAMP: Evidence for distinct regulatory mechanisms, Mol. Endocrinol., 3: 2110–2118.

    Google Scholar 

  • Gilman, A. G., 1989, G proteins and regulation of adenylyl cyclase, JAMA, 262: 1819–1825.

    Article  PubMed  CAS  Google Scholar 

  • Giroud, M., Enenbaum, D., D’Athis, P., Dumas, R., and Nivelon, J. L., 1988, Neurophysiological study of peripheral nerves in newborn infants with congenital hypothyroidism. Value in the surveillance of replacement therapy, Arch. Francaises De Pediatric, 45: 175–79.

    Google Scholar 

  • Glorieux, J., 1989, Mental development of patients with congenital hypothyroidism detected by screening.(Quebec experience), in: “Research in Congenital Hypothyroidism,” DeLange, D. A. Fisher, and D. Glinoer, eds., Plenum Press, New York.

    Google Scholar 

  • Gonzales, L. W. and Geel, S. E., 1978, Quantitation and characterization of brain tubulin (colchicine-binding activity) in developing hypothyroid rats, J. Neurochem., 30: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Gottesfeld, Z., Garcia, C. J., and Chronister, R. B., 1987, Perinatal, not adult, hypothyroidism suppresses dopaminergic axon sprouting in the deafferented olfactory tubercle of adult rat, J. Neurosci. Res., 18: 568–73.

    Google Scholar 

  • Gould, E., Frankfurth, M., Westlind-Danielsson, A., and McEwen, B. D., 1990, Developing forebrain astrocytes are sensitive to thyroid hormone, Glia, 3 (4): 283–92.

    Article  PubMed  CAS  Google Scholar 

  • Gross, H., Jellinger, K., Kaltenback, E., and Rett, E., 1968, Infantile cerebral disorders: clinical-neuropathological correlations to elucidate the aetiological factors, J. Neurol. Sci., 7: 551.

    Google Scholar 

  • Hadjzadeh, M., Sinha, A.K., Pickard, M.R., and Ekins, R.P., 1990, Effect of maternal hypothyroxinaemia in the rat on brain biochemistry in adult progeny, J. Neurochem., In Press.

    Google Scholar 

  • Havercroft, J. C. and Cleveland, D. W., 1984, Programmed expression of ß-tubulin genes during development and differentiation of the chicken, J. Cell Biol., 99: 1927–1935.

    Article  PubMed  CAS  Google Scholar 

  • Hammerschlag, R. and Brady, S. T., 1989, Axonal transport and the neuronal cytoskeleton, in: “Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 4th Ed.,” Siegel, G. J., et al., eds., New York: Raven Press.

    Google Scholar 

  • Hargreaves, A., Yusta, B., Aranda, A., Avila, J., and Pascual, A., 1988, Triiodothyronine (T3) induces neurite formation and increases synthesis of a protein related to MAP1B in cultured cells of neuronal origin, Dev. Brain. Res., 38: 141–148.

    Google Scholar 

  • Hendrich, T. E., Jackson, W. J., and Porterfield, S. P., 1984, Behavioral testing of progenies of Tx(Hypothyroid) and growth hormone treated Tx rats: An animal model for mental retardation, Neuroendo., 438: 429–437.

    Google Scholar 

  • Hendrich, C. E., Ocasio-Torres, W., Berdecia-Rodriquez, W., and Porterfield, S. P., 1987, Brain and liver ribosomal protein synthesis and profiles in hypothyroid mothers and their progenies, Am. Thyroid Assoc., Abstract #106.

    Google Scholar 

  • Hoffman, P. N., 1989, Expression of GAP-43, a rapidly transported growth-associated protein, and class II beta tubulin, a slowly transported cytoskeletal protein, are coordinated in regenerating neurons, J. Neurosci., 9 (3): 893–897.

    PubMed  CAS  Google Scholar 

  • Hoffman, P. N. and Cleveland, D. W., 1988, Neurofilament and tubulin expression recapitulates the developmental program during axonal regeneration: Induction of a specific ß-tubulin isotype, Proc. Natl. Acad. Sci. USA, 85: 4530–4533.

    Google Scholar 

  • Hoffman, P. N. and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol„ 66: 351–366.

    Google Scholar 

  • Hoffman, P. N., Thompson, G., Griffin, J., and Price, D., 1985, Changes in neurofilament transport coincide temporally with alteration in the caliber of axons in regenerating motor fibers, J. Cell Biol., 101: 1332–1340.

    Article  PubMed  CAS  Google Scholar 

  • Hoskins, S. G. and Grobstein, P., 1983, Induction of the ipsilateral retinothalamic projection in Xenopus laevis by thyroxine, Nature, 307: 730–733.

    Article  Google Scholar 

  • Hoyle, H. D. and Raff, E. C., 1990, Two drosophila beta tubulin isoforms are not functionally equivalent, J. Cell Biol., 111: 1009–1026.

    Article  PubMed  CAS  Google Scholar 

  • Hulse, A., 1987, Congenital hypothyroidism and neurological development, J. Child Psychol. Psychia., 24: 629–635.

    Google Scholar 

  • Jeantet, C. and Gros, F., 1981, One tubulin subunit accumulates during neurite outgrowth in mouse neuroblastoma cells, Biochem. Biophys. Res. Commun„ 103: 1035–1043.

    Google Scholar 

  • Jia-Liu, L., Zhong-Jie, Z., Zhon-Fu, S., Jia-Ziu, Z., Yu-Bin, T., and Bin-Zhon, C., 1989, Influence of iodine deficiency of human fetal thyroid gland and brain, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Conliffe, eds., Plenum Press, New York.

    Google Scholar 

  • Jianquan, L., Xin, W., Yuquin, Y., Kewei, W., Dakai, Q., Zhenfu, X., and Jim, W., 1985, The effects on fetal brain development in the rat of a severely iodine deficient diet derived from an endemic area: observations on the first generation, Neuropath. Appl. Neurobiol., 12: 261–276.

    Google Scholar 

  • Job, J. C., Canlorbe, P., Thomassin, N., and Vassal, J., 1969, L’hypothyroidie infantile a debut precoce avec glande en place, fixation fiable de radioiode et defaut de reponse a la thyrostimuline, Ann. Endocrinol., 30: 696–701.

    Google Scholar 

  • Jones, E. C., 1981, Development of connectivity in the cerebral cortex, in: “Studies in Developmental Neurobiology,” W.M. Cowan, eds., Oxford University Press, New York.

    Google Scholar 

  • Johanson, I. B., Turkewitz, G., and Hamburgh, M., 1980, Development of home orientation in hypothyroid and hyperthyroid rat pups, Devl. Psychobiol., 13: 331–342.

    Google Scholar 

  • Jones, E. G., Schreyer, D. J., and Wise, S. P., 1982, Growth and maturation of the rat corticospinal tract, Prog. Br. Res., 57: 361–379.

    Google Scholar 

  • Ketelbant-Balasse, P., Glinoer, D., and Neve, P., 1975, Ultrastructural aspects of the thyroid in a case of human congenital goitre with cretinism, Path. Europ., 10: 155–165.

    Google Scholar 

  • Klein, R.Z., 1985, Infantile Hypothyroidism then and now the results of neonatal screening, Curr. Prob. Ped., 15: 1–58.

    Google Scholar 

  • Kristt, D. A., 1978, Neuronal differentiation in somatosensory cortex of the rat. I. Relationship to synaptogenesis in the first postnatal week, Brain Res, 150: 467–486.

    Google Scholar 

  • Kudrjacev, T., 1978, Neurologic complications of thyroid dysfunction, Adv. Neurol., 19: 619–636.

    Google Scholar 

  • Kuypers, H. G. F. M., 1985, The anatomical and functional organization of the motor system, in: “Scientific Basis of Clinical Neurology,” M. Swash and C. Kennard, eds., Churchill Livingstone, New York.

    Google Scholar 

  • Larsen, P. R., 1989, Maternal thyroxine and congenital hypothroidism, NEJM, 321: 44–46.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J., 1988, Studying the intrinsic determinants of neuronal form and function, in: Intrinsic Determinants of Neuronal Form and Function, R. J. Lasek, ed., A. R. Liss, Inc., New York.

    Google Scholar 

  • Lasek, R. J., Garner, J. A., and Brady, S. T., 1984, Axonal transport of the cytoplasmic matrix, J. Cell Biol., 99: 212s - 221s.

    Article  PubMed  CAS  Google Scholar 

  • Lasek, R. J. and Brady, S. T., 1982, The structural hypothesis of axonal transport: Two classes of moving elements, in: “Axoplasmic Transport,” Weiss, D. G., ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Lauder J.M. and Krebs, H., 1986, Do neurotransmitters, neurohumors, and hormones specify critical periods? in: “Developmental Neuropsychobiology,” W. T. Greenough, J. M. Jurask, eds., Academic Press, New York.

    Google Scholar 

  • Lauder, J.M., 1989. Thyroid influences on the developing cerebellum and hippocampus of the rat, in: “Iodine and the Brain,” Plenum Press, New York, G. R. DeLong, J. Robbins, and P. G. Condliffe, eds., New York.

    Google Scholar 

  • Lee, M. K., Tuttle, J. B., Rebhun, L. K., Cleveland, D. W., and Frankfurter, Anthony, 1990, The expression and posttranslational modification of a neuron-specific ß-tubulin isotype during chick embryogenesis, Cell Motility and the Cytoskeleton, 17: 118–132.

    Article  PubMed  CAS  Google Scholar 

  • Lee, V., L. Otvos, M. Carden, M. Hollosi, B. Dietzschold and R I azzarini,1988, Identification of the major multiphosphorylation site in mammalian neurofilaments, Proc Natl. Acad. Sci. USA, 85: 1998–2002.

    Google Scholar 

  • Legrand, J., 1982–1983, Hormones thyroidiennes et maturation du systeme nerveux, J. Physiol., Paris 78: 603–652.

    Google Scholar 

  • Lemire, R. J., Loeser, J. D., Leech, R. W., and Alvord, E. C., 1975, Normal and abnormal development of the human nervous system, Harper Row, New York.

    Google Scholar 

  • Letarte, J. and Franchi, S. L., 1983, Clinical features of congenital hypothyroidism, in: “Congenital Hypothyroidism,” J. H. Dussault and P. Walker, eds., M. Dekker, New York.

    Google Scholar 

  • Lewis, SA., Sherline, P., and Cowan, N.J., 1986, A cloned cDNA encoding MAP1 detects a single copy gene in mouse and a grain-abundant RNA whose level decreases during development, J. Cell Biol., 102: 2107–2114.

    Google Scholar 

  • Lewis, S. A., Lee, M. G., and Cowan, N. J., 1984, Five mouse tubulin isotypes and their regulated expression during development, J. Cell Biol., 101: 852–861.

    Article  Google Scholar 

  • Lewis, S. A. and Cowan, N. J., 1988, Complex regulation and functional versatility of mammalian a-and /3- tubulin isotypes during the differentiation of testis and muscle cells, J. Cell Biol., 106: 2023–2033.

    Article  PubMed  CAS  Google Scholar 

  • Lissitzky, S., Torresani, J., Burrow, G. N., Bouchilloux, S., and Chabaud, O., 1975b, Defective thyroglobulin export as a cause of congenital goitre, Clin. Endocrinol., 4: 363–392.

    Google Scholar 

  • Littauer, U. Z., Giveon, D., Thierauf, M., Ginzburg, I., and Ponsting, 1. H., 1986, Common and distinct tubulin binding sites for microtubule-associated proteins, Proc. Natl. Acad. Sci., 83: 7162–7166.

    Google Scholar 

  • Lotmar, F., 1929, Histopathologische befunde in gehirenen von kongenitalem myxodem thyreoaplasie und kachexia thyreopriva, Atschr, Neurol Psychiat., 119: 491–513.

    Google Scholar 

  • Lotmar, F., 1928, Histopathologische befunde in gehirnen von kongenitalem Myxodem ( Thyreoaplasie ), Z.f.d.g. Neur. u. Psych., 119: 492–513.

    Google Scholar 

  • Lowe, T. W. and Cunningham, F. G., 1990, Thyroid Disease in Pregnancy, in: “Williams Obstetrics,” Supplement #9, 18th ed., Cunningham, F.G., McDonald, P., Gant, N., eds., Appleton-Lange, East Norwalk, Conn., 1–15.

    Google Scholar 

  • Maccioni, R. B., Rivas, C. I., and Vera, J. C., 1988, Differential interaction of synthetic peptides from the carboxyl-terminal regulatory domain of tubulin with microtubule-associated proteins, EMBO J., 7: 1957–1963.

    PubMed  CAS  Google Scholar 

  • Macfaul, R., Borner, S., Brett, E. M., and Grant, D. B., 1978, Neurological abnormalities in patients treated for hypothyroidism from early life, Arch. Dis. Child., 53: 611–619.

    Google Scholar 

  • Malamud, N., Itabashi, H. H., Castor, J., and Messinger, H. B., 1964, An etiologic and diagnostic study of cerebral palsy, J. Pediatr., 65: 270–293.

    Article  PubMed  CAS  Google Scholar 

  • Man, E. B., Holden, R. H., and Jones, W. S., Thyroid function in human pregnancy, Am. J. Obstet., Gyn., 109: 12–18, 1971.

    CAS  Google Scholar 

  • Mandelkow, E. and Mandelkow, E. M., 1989, Microtubular structure and polymerization, Curr. Opin. Cell Biol., 1: 5–9.

    Google Scholar 

  • Marc, C. and Rabie, A., 1985, Microtubules and neurofilaments of the sciatic nerve fibers of the developing rat: Effects of thyroid deficiency, Int. J. Dey. Neurosci., 3: 353–358.

    Google Scholar 

  • Marc, C., Clavel, M., and Rabie, A., 1986, Non-phosphorylated and phosphorylated neurofilaments in the cerebellum of the rat: An immunocytochemical study using monoclonal antibodies, development in normal and thyroid-deficient animals, Dev. Brain Res., 26: 249–260.

    Google Scholar 

  • Marin-Padilla, M., 1970, Prenatal and early postnatal ontogenesis of the human motor cortex: a golgi study. I. The sequential development of the cortical layers, Brain Res., 23: 167–183.

    Google Scholar 

  • Matus, A., 1988, Microtubule-associated proteins: Their potential role in determining neuronal morphology, Ann. Rev. Neurosci., 11: 29–44.

    Google Scholar 

  • Marin-Padilla, M., 1988, Early ontogenesis of the human cerebral cortex, in: “Cerebral Corte;” A. Peters and E. G. Jones, eds, Plenum Press, New York.

    Google Scholar 

  • Marinesco, M.G., 1924, Contribution a l’etude des lesions du myxoedeme congenital, Encephale, 19: 265–293.

    Google Scholar 

  • Mayerhofer, A., Amador, A. G., Beamer, W. G., and Bartke, A., 1988, Ultrastructural aspects of the goiter in Log/mg mice, J. of Heredity, 79: 200–3.

    CAS  Google Scholar 

  • Meller, K., Breipohl, W., and Glees, P., 1968, Synaptic organization of the molecular and outer granular layer in the motor cortex in the white-mouse during postnatal development: A golgi and electron-microscopical study, Z. Zellforsch. Mikrosk. Anat. Abt. Histochem., 92: 217–231.

    Google Scholar 

  • Medeiros-Neto, G. A., Knobel, M., Bronstein, M. D., Simonetti, J., Filho, F. F., and Mattar, E., 1979, Impaired cyclic-AMP response to thyrotropin in congenital hypothyroidism with thyroglobulin deficiency, Acta. Endocrinol., 92: 62.

    Google Scholar 

  • Miller, M. W., 1988, Development of projection and local circuit neurons in neocortex, in: “Development and Maturation of the Cerebral Cortex, Cerebral Cortex,” Vol. 7, A. Peters and E. G. Jones, eds., Plenum Press, New York.

    Google Scholar 

  • Miller, M. W., 1987a, Effect of prenatal exposure to alcohol on the distribution and time of origin of corticospinal neurons in the rat, J. Comp. Neurol, 257: 372–382.

    Google Scholar 

  • Miller, F. D., Naus, C. C. G., Durand, M., Bloom, F. E., and Milner, R. J., 1987b, Isotypes of a-tubulin are differentially regulated during neuronal maturation, J. Cell Biol., 105: 3065–3073.

    Article  PubMed  CAS  Google Scholar 

  • Mills, S. A. and Savage, D. D., 1988, Evidence of hypothyroidism in the genetically epilepsy-prone rat, Epilepsy Research, 2: 102–10.

    Article  PubMed  CAS  Google Scholar 

  • Mitchison, T. and Kirschner, M., 1988, Cytoskeletal dynamics and nerve growth, Neuron, 1: 761–772.

    Article  PubMed  CAS  Google Scholar 

  • Morreale de Escobar, G. M. and Escobar del Rey, F., 1983. Thyroid hormone and the developing brain, in: “Congenital Hypothyroidism,” J. H. Dussault and P. Walker, eds., Academic Press, New York.

    Google Scholar 

  • Morreale de Escobar, G. M., Pastor, R., Obregon, M. J., and Del Ray, F. E., 1985, Effects of maternal hypothyroidism on the weight and thyroid hormone content of rat embryonic tissues, before and after onset of fetal thyroid function, Endocrinol., 117: 1890.

    Article  Google Scholar 

  • Morreale de Escobar, G., Ruiz de Ona, C., Obregon, M.J., and Escobar del Rey, F., 1989, Models of fetal iodine deficiency, in: “Iodine and the Brain,” G.R. DeLong, J. Robbins, and P.G. Conliffe, eds., Plenum Press, New York.

    Google Scholar 

  • Morris, R. G. M. Garrud, P., Rawlines, J. N. P., and O’Keefe J., 1982, Place navigation is impaired in rats with hippocampal lesions, Nature, 297: 681–683.

    Google Scholar 

  • Narayan, P., Towle, H. C., 1985, Stabilization of a specific nuclear mRNA precursor by thyroid hormone, Mol. Cell. Biol., 5: 2642–2646.

    Google Scholar 

  • Narayanan, C. H., Narayanan, Y., and Browne, R. C., 1982, Effects of induced thyroid deficiency on the development of suckling behavior in rats, Physiol. Behay., 29: 361–370.

    Google Scholar 

  • Nelson, K. and Ellenberg, J., 1986, Antecedents of cerebral palsy: Multivariate analysis of risk, NEJM, 315: 81–86.

    Google Scholar 

  • Narayanan, C. H. and Narayanan, Y., 1985, Cell formation in the motor nucleus and mesencephalic nucleus of the trigeminal nerve of rats made hypothyroid by propylthiouracil, Exp. Brain Res., 59: 257–266.

    Google Scholar 

  • New England Congenital Hypothyroidism Collaborative Group, 1990, Elementary school performance of children with congenital hypothyroidism, J. Ped., 116: 27–32.

    Article  Google Scholar 

  • Noguchi, T., 1988, Brain development in dwarf mice, Progr. in Neurobiol., 31: 149–170.

    Google Scholar 

  • Noguchi, T., Kudo, M., Sugisaki, T., and Satoh, I., 1986, An immunocytochemical and electron microscopic study of the hyt mouse anterior pituitary gland, J. Endocrinol„ 109: 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, T. and Sugisaki, T., 1984, Hypomyelination in the cerebrum of the congenitally hypothyroid mouse (hit/hyt), J. Neurochem., 42: 891–893.

    Article  PubMed  CAS  Google Scholar 

  • Nunez, J., 1988, Immature and mature variants of MAP2 and Tau proteins and neuronal plasticity, TINS, 11: 477–479.

    PubMed  CAS  Google Scholar 

  • Nunez, J., Couchie, D., and Brion, J. P., 1989, Microtubule assembly: Regulation by thyroid hormones, in: “Iodine and the Brain,” G. R. Delong, J. Robbins, P. G. Condliffe, eds., Plenum Press, New York.

    Google Scholar 

  • Okado, N., 1980, Development of the human cervical spinal cord with reference to synapse formation in the motor nucleus, J. Comp. Neurol., 191: 495–513.

    Google Scholar 

  • Paschal, B. M., Obar, R. A., and Vallee, R. B., 1989, Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin, Nature, 342: 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Pharoah, P. O. D., Connolly, K. J., Ekins, R. P., and Harding, A. G., 1984, Maternal thyroid hormone levels in pregnancy and the subsequent cognitive and motor performance of the children, Clin. Endocrin., 21: 265–270.

    Google Scholar 

  • Pinto Lord, M. C. and Caviness, V. S., 1979, Determinants of cell shape and orientation: a comparative golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice, J. Comp. Neuro., 187: 49–70.

    Google Scholar 

  • Porter, R., 1985, The cerebral cortex and control of movement performance, in: “Scientific Basis of Clinical Neurology,” M. Swash and C. Kennard, eds., Churchill Livingstone, New York.

    Google Scholar 

  • Porterfield, S. P. and Hendrich, C. E., 1981, Alterations of serum thyroxine, triiodothyronine, and thyrotropin in the progeny of hypothyroid rats, Endocrinol., 108: 1060–1063.

    Article  CAS  Google Scholar 

  • Purpura, D. P., 1975, Dendritic Differentiation in human cerebral cortex: normal and aberrant developmental patterns, in: “Advances in Neurology,” G. W. Kreutzberg, ed., Raven Press, New York.

    Google Scholar 

  • Puymirat, J., Barret, A., Picart, R., Vigny, A., Loudes, C., Faivre-Bauman, A., and TixierVidal, A., 1983, Triiodothyronine enhances the morphological maturation of dopaminergic neurons from fetal mouse hypothalamus cultured in serum-free medium, Neurosci., 10: 801–810.

    Article  CAS  Google Scholar 

  • Rabie, A., Patel, A., Clavel, M., and Legrand, J., 1979, Effect of thyroid deficiency on the growth of the hippocampus in the rat, Dev. Neurosci., 2: 183–194.

    Google Scholar 

  • Rami, A., Patel, A., and Rabie, A., 1986a, Thyroid hormone and development of the rat hippocampus: Cell acquisition in the dentate gyrus, Neurosci., 19: 1207–1216.

    Google Scholar 

  • Rami, A., Patel, A. J., and Rabie, A., 1986b, Thyroid hormone and development of the rat hippocampus: Morphological alterations in granule and pyramidal cells, Neurosci. 4: 1217–1226.

    Google Scholar 

  • Rasool CG, Bradley WG, Reichlin S, Reduced axoplasmic somatostatin transport in hypothyroid rats, J Neurochem, 45: 973–976.

    Google Scholar 

  • Rastogi, R. B. and Singhal, R. L., 1976, Influence of neonatal and adult hyperthyroidism on behavior and biosynthetic capacity for norepinephrine, dopamine and 5-hydroxytryptamine in rat brain, J. Pharmacol. Exp. Ther., 198: 609–618.

    Google Scholar 

  • Regard, E., Taurog, A., and Nakashimas, T., 1978, Plasma thyroxine and triiodothyronine levels in spontaneously metamorphosing rana catesbeiana tadpoles and in adult anuran amphibia, Endocrinol., 102: 674–683.

    Article  CAS  Google Scholar 

  • Rice, F.L., 1975, The development of the primary somatosensory cortex in the mouse: 1) A nissl study of the ontogenesis of the barrels and the barrel field. 2 ) A quantitative autoradiographic study of the time of origin and pattern of migration of neuroblaste on area SI. (PH.D. Dissertation) The Johns Hopkins University) University Microfilms, Ann Arbor.

    Google Scholar 

  • Ricketts, M.H., Simons M.J., Parma J., Mercken, L., Dong O., Vassart G., 1987, A non-sense mutation causes hereditary goiter in the afrikander cattle and unmaks alternative splicing of thyroglobulin transcripts, PNAS, 84: 3181–3184.

    Article  PubMed  CAS  Google Scholar 

  • Rochiccioli, P., Alexandre, F., and Roge, B., 1989, Neurological development in congenital hypothyroidism, in: Research in: “Congenital Hypothyroidism,” F. DeLange, D. A. Fisher, and D. Glinoer, eds., Plenum Press, New York.

    Google Scholar 

  • Roland, P. E., 1987, Metabolic mapping of sensorimotor integration in the human brain, in: “Motor Areas of the Cerebral Cortex,” R. Porter and C. G. Phillips, eds., A Wiley-Interscience Publication, New York.

    Google Scholar 

  • Rosman, N.P., 1975, Neurological and muscular aspects of hypothyroidism in childhood, in: “The Pediatric Clinics of North America,” A. L. Prensky, ed., Saunders, Philadelphia.

    Google Scholar 

  • Ross, E. M., 1989, Signal sorting and amplification through G protein-coupled receptors, Neuron, 3: 141–152.

    Article  PubMed  CAS  Google Scholar 

  • Rovet, J. F., Westbrook, D. L., and Ehrlich, R. M., 1984, Neonatal thyroid deficiency: Early temperamental and cognitive characteristics, J. Am. Acad. of Child Psychi., 23: 10–22.

    Google Scholar 

  • Rovet, J., Glorieus, J., and Heyerdahl, S., 1987, Summary of research findings on the psychological follow-up of CH children identified by newborn screening, “Advances in Neonatal Screening, Proceedings of the Sixth International Newborn Screening Symposium,” B. Therrell ed., Elsevier Press, Amsterdam.

    Google Scholar 

  • Rovet, J., Ehrlich, R., and Sorbara, D., 1987, Intellectual outcome in children with fetal hypothyroidism, J. Ped., 110: 700–704.

    Article  CAS  Google Scholar 

  • Rovet, J. F., 1989, Congenital Hypothyroidism: Intellectual and neuropsychological functioning, in: “Psychoneuroendocrinology, Brain, Behavior, and Hormonal Interactions,” C. Holmes, ed., Springer-Verlag, New York.

    Google Scholar 

  • Rudy, J. W. and Stadler-Morris S., Albert P., 1987, Ontogeny of spatial navigation behaviors in the rat: dissociation of “proximal” and “distal’-cue based behaviors, Behay. Neurosci., 101: 62–73.

    Google Scholar 

  • Ruiz-Marcos, A. 1989, Quantitative studies of the effects of hypothyroidism on the development of the cerebral cortex, in: “Iodine and the Brain,” G. R. DeLong, J. Robbins, and P. G. Condliffe, eds., Plenum Press, New York.

    Google Scholar 

  • Ruiz-Marcos, A., Salas, J., Sanchez-Toscano, F., Escobar del Rey, F., and Morreale de Escobar, G., 1983, Effects of neonatal and adult onset hypothyroidism on pyramidal cells of the rat auditory cortex, Dev. Brain Res., 9: 205–213.

    Google Scholar 

  • Samuels, H. H., Forman, B. M., Horowitz, Z. D, and Ye, Z-S, 1989, Regulation of gene expression by thyroid hormone, Ann. Rev. Physiol., 51: 623–639.

    Google Scholar 

  • Sarafian T. and Verity, A.M., 1986, Influence of thyroid hormones on rat cerebellar cell aggregation and survival in culture, Dev. Brain Res., 26: 261–270.

    Google Scholar 

  • Sarlieve, L. L., Bouchon, R., Koehl, C., and Neskovic, N. M., 1983, Cerebroside and sulfatide biosynthesis in the brain of snell dwarf mouse: effects of thyroxine and growth hormone in the early postnatal period, J. Neurochem., 40: 1058–1062.

    Article  PubMed  CAS  Google Scholar 

  • Schapiro, S., Salas, M., and Vukovich, K., 1970, Hormonal effects on ontogeny of swimming ability in the rat: Assessment of central nervous system development, Science, 168: 147–150.

    Google Scholar 

  • Schalock, R. L., Brown, W. J., and Smith, R. L., 1979, Long-term effects of propylthiouracilinduced neonatal hypothyroidism, Exper. Psychobio., 12: 187–199.

    Google Scholar 

  • Schreyer, D. J. and Jones, E. G., 1982, Growth and target finding by axons of the corticospinal tract in prenatal and postnatal rats, Neurosci., 7: 1837–53.

    Article  CAS  Google Scholar 

  • Serrano, L., Montejo de Garcini, E., Hernandez, M. A., and Avila, J., 1985, Localization of the tubulin binding site for tau protein, Eur. J. Biochem., 153: 595–600.

    Google Scholar 

  • Shanklin, D. R. and Stein, S. A., 1988, The Ultrastructural Component Phasing of Developing Fetal and Early Neonatal Mouse Thyroid Cells, FASEB J., 2:A394, #571.

    Google Scholar 

  • Shanklin, D. R., Stein, S. A., et al., 1991, Pathological studies of fetal thyroid development, in: “Advances in Perinatal Thyroidology,” B. Bercu, and D. Shulman, eds., Plenum Press, New York.

    Google Scholar 

  • Shoukimas, G. M. and Hinds, J. W., 1978, The development of the cerebral cortex in the embryonic mouse: an electron microscopic serial section analysis, J. Comp. Neur., 179: 795–830.

    Google Scholar 

  • Sidman, R. L., and Rakic, P., 1982, Development of the human central nervous system, in: “Histology and Histopathology of the Nervous System,” W. Haymaker and R. D. Adams, eds., C.C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Siegrist-Kaiser, Ca. A., Juge-Aubry, C., Tranter, M. P., Ekenbarger, D. M., Leonard, J. L., 1990, Thyroxine-dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone, J. of Bio. Chem., 265: 5296–302.

    Google Scholar 

  • Smith, S. J., 1988, Neuronal Cytomechanics: The actin based motility of growth cones, Science, 242: 708–715.

    Google Scholar 

  • Stanbury, J. B., Rochmans, P., Buhler, U. K., Ochi, Y., 1968, Congenital hypothyroidism with impaired thyroid response to thyrotropin, NEJM, 279: 1127–1138.

    Article  Google Scholar 

  • Stein, S. A., 1985, Thyroid hormone control of gene expression in Spraque-Dawley rat brain and liver, Ann. Neuro., 18: 385.

    Google Scholar 

  • Stein, S. A., 1988, 9A6 mRNA, a mouse and rat thyroid regulated brain mRNA: Sequence analysis and in situ hybridization, Soc. for Neuro. Abst., Vol. 14, Part 2.

    Google Scholar 

  • Stein, S. A., Adams, P. M., Shanklin, D. R., Mihailoff, G. A., Palnitkar, M., 1989a, Thyroid hormone regulation of specific mRNAs in developing brain, in: “Iodine and the Brain,” G. R. Delong, J. Robbins, P. G. Condliffe, eds., New York, Plenum Press.

    Google Scholar 

  • Stein, S. A., Shanklin, D. R., Krulich, L., Roth, M. G., Chubb, C. M., Adams, P. M., 1989b, Evaluation and characterization of the 113//lis hypothyroid mouse II. Abnormalities of TSH and the thyroid gland, Neuroendocrin., 49: 509–519.

    Google Scholar 

  • Stein, S. A., Bloom, G. S., Mihailoff, G. A., Adams, P. M., and Shanklin, D. R., 1989c, Thyroid hormone effects on microtubular composition in developing cerebral cortex, Soc. Neurosci. Abst., 15 (1): 95.

    Google Scholar 

  • Stein, S. A., Kirkpatrick, L., Shanklin, D. R., Adams, P. M., and Brady, S., 1991a, Hypothyroidism reduces the rate of slow component A(SCa) axonal transport and of total tubulin protein in the hjt/ham+ mouse optic nerve, J. Neurosci. Res., 28: 121–133.

    Google Scholar 

  • Stein, S. A., Zakarija, M., MacKenzie, J. M., and Shanklin, D. R., 1991b, The site of the molecular defect in the thyroid gland of the]íßt/1j mouse: Abnormalities in the TSH receptor-G protein adenylyl cyclase complex, THYROID, In Press.

    Google Scholar 

  • Stein, S. A., Bloom, G. S., Shanklin, D. R., and Adams, P. M., 1991c, The effect of thyroid hormone on microtubular composition in developing mouse cerebral cortex, Submitted for publication.

    Google Scholar 

  • Stein, S. A., et al., 1991d, The role of thyroid hormone in adult and developing brain, in: “Molecular Genetics of Neurological Disease,” R. N. Rosenberg and S. Prusiner, eds., Churchill-Livingstone.

    Google Scholar 

  • Stein, SA., Kirkpatrick, L., Adams, P.M., Shanklin, D.R., and Brady, S.T., 1991e, Specific proteins of slow component b(SCb) axonal transport are slowed in the hypothyroid hit/hit mouse optic nerve, Submitted.

    Google Scholar 

  • Strait, KA.,, Schwartz, H.L., Perez-Castillo, A.M.,and Oppenheimer, J.H., 1990, Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats, J. Biol. Chem., 265: 10514–10521.

    Google Scholar 

  • Strupp, B. J. and Levitsky, D. A., 1983, Early brain insult and cognition: A comparison of malnutrition and hypothyroidism, Dey. Psych., 16: 535–40.

    Google Scholar 

  • Sturrock, R. R., 1974, Histogenesis of the anterior limb of the anterior commissure of the mouse brain, I. A quantitative study of changes in the glial population with age, II. A quantitative study of pre and postnatal mitosis, J. Anat., 117: 17–35.

    Google Scholar 

  • Sullivan, K. F., 1988, Structure and utilization of tubulin isotypes, Ann. Rev. Cell Biol., 4: 687–716.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, R. J. and Rudy, J. W., 1988, Place learning in the Morris place navigation task is impaired by damage to the hippocampal formation even if the temporal demands are reduced, Psychobiol., 16: 157–163.

    Google Scholar 

  • Takahashi, T., 1983, Transplacental effects of 3,5-dimethyl-3’-isopropyl-l-thyronine on tubulin content in fetal brains in rats, Jap. J. Physiol., 34: 365–368.

    Article  Google Scholar 

  • Taylor, B. A. and Rowe, L., 1987, The congenital goiter mutation is linked to the thyroglobulin gene in the mouse, Proc. Natl. Acad. Sci. USA, 84: 1986–90.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, R.P., Garner, C.C., and Matus, A., 1989, In situ localization of microtubule-associated protein mRNA in the developing and adult rat brain, Neuron, 2: 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  • Uziel, A., 1986, Periods of sensitivity to thyroid hormone during the development of the organ of Corti, Acta Otolaryngol. Suppl., 429: 23–27.

    Article  PubMed  CAS  Google Scholar 

  • Vallee, R. B. and Bloom, G. S., 1991, Mechanisms of fast and slow axonal transport, Ann. Rev. Neurosci., 14: 59–92.

    Article  PubMed  CAS  Google Scholar 

  • Van Middlesworth, L. and Norris, C. H., 1980, Audiogenic seizures and cochlear damage in rats after perinatal antithyroid treatment, Endocrin., 106: 16–86.

    Google Scholar 

  • Vulsma, T., Gons, M. H., and de Vijlder, J. J. M., 1989, Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect of thyroid agenesis, NEJM, 321: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein, S. L. and Tharp, B. R., 1989, Etiology and timing of static encephalopathies of childhood (cerebral palsy), in: “Fetal and Neonatal Brain Injury,’ D. K. Stevenson and P. Sunshine, eds., B.C. Decker, Inc., Philadelphia.

    Google Scholar 

  • Wise, S. P., Fleshman, J. W., and Jones, E. G., 1979, Maturation of pyramidal cell form in relation to developing afferent and efferent connections of rat somatic sensory cortex, Neurosci., 4: 1275–1297.

    Article  CAS  Google Scholar 

  • Wolter, R., Noel, P., de Cock, P., Craen, M., Ernould, C., Malvaux, P., Verstraeten, F., Simons, J., Mertens, S., Van Broeck, N., and Vanderschueren-Lodeweyck, M., 1979, Neuropsychological study in treated thyroid dysgenesis, Acta Paediatr Scand. Suppl., 277: 41–45.

    Article  PubMed  CAS  Google Scholar 

  • Wujek, J. and Lasek, R. J., 1983, Correlation of axonal regeneration and slow component b in two branches of a single axon, J. Neurosci., 3: 243–257.

    PubMed  CAS  Google Scholar 

  • Yamada, K.M., Spooner B.S., Wessells N.K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Bio., 49: 614–635.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Stein, S.A., Adams, P.M., Shanklin, D.R., Mihailoff, G.A., Palnitkar, M.B. (1991). Thyroid Hormone Control of Brain and Motor Development: Molecular, Neuroanatomical, and Behavioral Studies. In: Bercu, B.B., Shulman, D.I. (eds) Advances in Perinatal Thyroidology. Advances in Experimental Medicine and Biology, vol 299. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5973-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5973-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5975-3

  • Online ISBN: 978-1-4684-5973-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics