Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 266))

Abstract

In the last twenty years or so there has been an enormous growth in the use of reactive gas glow discharges for the processing of surfaces. Surface processing in this context can be divided into three major categories: deposition, etching and surface modification. Deposition and etching are terms which are well understood by most technically trained people but surface modification is a less familiar expression. The term surface modification is used to describe those processes which alter the physical and/or chemical characteristics of a pre-existing solid surface and in which this alteration is limited to a region relatively near the surface of the solid. Examples of surface modification processes are plasma oxidation, plasma nitriding and surface texturing. Some areas of technology in which reactive gas glow discharges play a major role are microelectronics, magnetic and optical recording technologies, photovoltaics, architectural glass, and machine tool fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Kokubo, F. Tochikubo and T. Makabe, Diagnostics of low-frequency CH4 discharge by optical emission spectroscopy, J. Phvs.D 22: 1281 (1989).

    ADS  Google Scholar 

  2. J.A. Mucha, D.L. Flamm and D.E. Ibbotson, On the role of oxygen and hydrogen in diamond-forming discharges, J. Appl. Phys. 65: 3448 (1989).

    Article  ADS  Google Scholar 

  3. J.W. Coburn and M. Chen, Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density, J. Appl. Phys. 51: 3134 (1980).

    Article  ADS  Google Scholar 

  4. R. d’Agostino, F. Cramarossa, S. De Benedictus and G. Ferraro, Spectroscopic diagnostics of CF4–02 plasmas during Si and SiO2 etching processes, J. Appl. Pis. 52: 1259 (1981).

    Article  ADS  Google Scholar 

  5. V.M. Donnelly, D.L. Flamm, W.C. Dautremont-Smith and D.J. Werder, Anisotropic etching of Si02 in low frequency CF4/O2 and NF3/Ar plasmas, J. Appl. Phys. 55: 242 (1984).

    Article  ADS  Google Scholar 

  6. R.M. Roth, K.G. Spears and G. Wong, Spatial concentrations of silicon atoms by laser-induced fluorescence in a silane glow discharge, Appl. Phys. Lett. 45: 28 (1984).

    Google Scholar 

  7. R.A. Gottscho, R.H. Burton, D.L. Flamm, V.M. Donnelly and G.P. Davis, Ion dynamics of rf plasmas and plasma sheaths: A time-resolved spectroscopic study, J. Appl. Phys. 55: 2707 (1984).

    Article  ADS  Google Scholar 

  8. G.S. Selwyn, Spatially resolved detection of 0 atoms in etching plasmas by two-photon laser-induced fluorescence, J. Appl. Phys. 60: 2771 (1986).

    Article  ADS  Google Scholar 

  9. R.E. Walkup, K.L. Saenger and G.S. Selwyn, Studies of atomic oxygen in 02 + CF4 rf discharges by two-photon laser-induced fluorescence and optical emission spectroscopy, J. Chem. Phys. 84: 2668 (1986).

    Article  ADS  Google Scholar 

  10. G.S. Selwyn, L.D. Baston and H.H. Sawin, Detection of Cl and chlorine-containing negative ions in rf plasmas by two-photon laser-induced fluorescence, Appl. Phys. Lett. 51: 898 (1987).

    Google Scholar 

  11. R.A. Gottscho and T.A. Miller, Optical techniques in plasma diagnostics, Pure and Appl. Chem. 56: 189 (1984).

    Article  Google Scholar 

  12. W.R. Harshbarger, Plasma diagnostics and end-point detection, in: “VLSI Electronics- Microstructure Science, Vol. 8- Plasma Processing for VLSI,” N.G. Einspruch and D.M. Brown, eds., Academic Press, Orlando (1984), pp. 411–446.

    Google Scholar 

  13. R.W. Dreyfus, J.M. Jasinski, R.E. Walkup and G.S. Selwyn, Optical diagnostics of low pressure plasmas, Pure and Appl. Chem. 57: 1265 (1985).

    Google Scholar 

  14. V.M. Donnelly, Optical diagnostic techniques for low pressure plasmas and plasma processing, in: “Plasma Diagnostics, Vol. 1- Discharge Parameters and Chemistry,” 0. Auciello and D.L. Flamm, eds., Academic Press, San Diego (1989), pp. 1–46.

    Google Scholar 

  15. L.A. Farrow, Infrared laser spectroscopy of BC13 in an rf discharge, J. Chem. Phys. 82: 3625 (1985).

    Article  ADS  Google Scholar 

  16. J.A. O’Neill, J. Singh and G.G. Gifford, In situ infrared diagnostics of particle forming etch plasmas, J. Vac. Sci. Technol.A 8:1716 (1990).

    Article  ADS  Google Scholar 

  17. K.G. Spears, T.J. Robinson and R.M. Roth, Particle distributions and laser-particle interactions in an rf discharge of silane, IEEE Trans. Plasma Sci. PS-14: 179 (1986).

    Google Scholar 

  18. G.S. Selwyn, J.S. McKillop, K.L. Haller and J.J. Wu, In situ plasma contamination measurements by HeNe laser light scattering: A case study, J. Vac. Sci. Technol.A 8:1726 (1990).

    Article  ADS  Google Scholar 

  19. R.A. Gottscho and C.E. Gaebe, Negative ion kinetics in rf glow discharges, IEEE Trans. Plasma Sci. PS-14: 92 (1986).

    Google Scholar 

  20. P.J. Hargis, Trace detection of N2 by KrF-laser-excited spontaneous Raman spectroscopy, Appl. Optics 20: 149 (1981).

    ADS  Google Scholar 

  21. P.J. Marcoux and P.D. Foo, Methods for endpoint detection for plasma etching, Solid State Technol. 24–4: 115 (1981).

    Google Scholar 

  22. P.A. Heimann, Optical etch-rate monitoring using active device areas: Lateral interference effects, J. Electrochem. Soc. 132: 2003 (1985).

    Google Scholar 

  23. G.S. Selwyn, B.D. Ai and J. Singh, Real-time measurements of plasma/surface interaction by plasma-amplified photoelectron detection, Appl. Phys. Lett. 52: 1953 (1988).

    Google Scholar 

  24. S.W. Downey, A. Mitchell and R.A. Gottscho, Photoemission optogalvanic spectroscopy: An in-situ method for plasma electrode surface characterization, J. Appl. Phys. 63: 5280 (1988).

    Article  ADS  Google Scholar 

  25. A. Mitchell and R.A. Gottscho, Plasma power dissipation at wafer surfaces measured using pulsed photoluminescence spectroscopy, J. Vac. Sci. Technol.A 8: 1712 (1990).

    Article  ADS  Google Scholar 

  26. D.E. Aspnes and R.P.H. Chang, Spectroscopic ellipsometry in plasma processing, in: “Plasma Diagnostics, Vol. 2-Surface Analysis and Interactions,” 0. Auciello and D.L. Flamm, eds., Academic Press, San Diego (1989), pp. 67–108.

    Google Scholar 

  27. T.F. Heinz, M.M.T. Loy and W.A. Thompson, Study of symmetry and disordering of Si(111)-7x7 surfaces by optical second harmonic generation, J. Vac. Sci. Technol.B 3: 1467 (1985).

    Article  Google Scholar 

  28. H.E. Evans and P.P. Jennings, Mass spectrometric study of the ionic species in a radiofrequency discharge in methane, J. Phys. Chem. 70: 1265 (1966).

    Article  Google Scholar 

  29. G. Smolinsky and M.J. Vasile, Ionic and neutral products of an rf discharge in methane, Intern. J. Mass Spectrom. Ion Phys. 16: 137 (1975).

    Article  Google Scholar 

  30. M.J. Vasile and G. Smolinsky, Mass spectrometric sampling of the ionic and neutral species present in different regions of an rf discharge in methane, Intern. J. Mass Spectrom. Ion Phys. 18: 179 (1975).

    Article  Google Scholar 

  31. R.B. Lockwood, R.E. Miers, L.W. Anderson, J.E. Lawler and C.C. Lin, Effect of water vapor on a CH4–H2 discharge plasma, Appl. Phys. Lett. 55: 1385 (1989).

    Google Scholar 

  32. J.W. Coburn, E. Taglauer and E. Kay, Glow-discharge mass spectrometry- Technique for determining elemental composition profiles in solids, J. Appl. Phys. 45: 1779 (1974).

    Article  ADS  Google Scholar 

  33. VG9000- Glow Discharge Mass Spectrometer, VG Isotopes Ltd.

    Google Scholar 

  34. J.W. Coburn, Mass spectrometric studies of positive ions in rf glow discharges, Thin Solid Films 171: 65 (1989).

    Article  ADS  Google Scholar 

  35. M.J. Vasile and H.F. Dylla, Mass spectrometry of plasmas, in: “Plasma Diagnostics, Vol. 1- Discharge Parameters and Chemistry,” O. Auciello and D.L. Flamm, eds., Academic Press, San Diego (1989), pp. 185–238.

    Google Scholar 

  36. B. Chapman, “Glow Discharge Processes,” John Wiley & Sons, New York (1980), p. 59.

    Google Scholar 

  37. J.W. Coburn and E. Kay, Pressure considerations associated with ion sampling from glow discharges, J. Vac. Sci. Technol. 8: 738 (1971).

    Article  ADS  Google Scholar 

  38. H. Lergon, M. Venugopalan and K.G. Muller, Mass spectrometer-wall probe diagnostic of Ar discharges containing SF6 and/or O2: Reactive ions in etching plasmas, Plasma Chem. Plasma Process. 4: 107 (1984).

    Article  Google Scholar 

  39. J.W. Coburn and E. Kay, Positive-ion bombardment of substrates in rf diode glow discharge sputtering, J. Appl. Phys. 43: 4965 (1972).

    Article  ADS  Google Scholar 

  40. L.J. Overzet, J.H. Beberman and J.T. Verdeyen, Enhancement of the negative ion flux to surfaces from radio-frequency processing discharges, J.Appl. Phys. 66: 1622 (1989).

    Google Scholar 

  41. H. Kojima, H. Toyoda and H. Sugai, Observation of CH rad-ical and comparison with CH3 radical in a rf methane CH2 charge, Appl. Phys. Lett. 55: 1292 (1989).

    Google Scholar 

  42. T.A. Milne, J.E. Beachey and F.T. Greene, Study of relaxation in free jets using temperature dependence of n-butane mass spectra, J. Chem. Phys. 56: 3007 (1972).

    Article  ADS  Google Scholar 

  43. H.F. Winters, The role of chemisorption in plasma etching, J. Appl.Phys. 49: 5165 (1978).

    Article  ADS  Google Scholar 

  44. J.E. Spencer, J.H. Dinan, P.R. Boyd, H. Wilson and S.E. Buttrill, Stoichiometric dry etching of mercury cadmium telluride using a secondary afterglow reactor, J. Vac. Sci. Technol.A 7: 676 (1989).

    Article  ADS  Google Scholar 

  45. T.R. Hayes, M.A. Dreisbach, P.M. Thomas, W.C. DautremontSmith and L.A. Heimbrook, Reactive ion etching of InP using CH4/H2 mixtures: Mechanisms of etching and anisotropy, J. Vac. Sci. Technol.B 7: 1130 (1989).

    Article  Google Scholar 

  46. S.J. Pearton, W.S. Hobson and K.S. Jones, Etch rates and surface chemistry of GaAs and AlGaAs reactive ion etched in C2H6/H2, J. Appl. Phys. 66: 5009 (1989).

    Article  ADS  Google Scholar 

  47. D.L. Smith and R.H. Bruce, Si and Al etching and product detection in a plasma beam under ultrahigh vacuum, J. Electrochem. Soc. 129: 2. 045 (1982).

    Google Scholar 

  48. H.F. Winters, J.W. Coburn and T.J. Chuang, Surface processes in plasma-assisted etching environments, J. Vac. Sci. Technol.B 1: 469 (1983).

    Article  Google Scholar 

  49. J.W. Coburn and H.F. Winters, Ion-and electron-assisted gas-surface chemistry- An important effect in plasma etching, J. Appl. Phys. 50: 3189 (1979).

    Article  ADS  Google Scholar 

  50. Y-Y. Tu, T.J. Chuang and H.F. Winters, Chemical sputtering of fluorinated silicon, Phys. Rev.B 23: 823 (1981).

    Article  Google Scholar 

  51. H.F. Winters and J.W. Coburn, Plasma-assisted etching mechanisms: The implications of reaction probability and halogen coverage, J. Vac. Sci. Technol.B 3: 1376 (1985).

    Article  Google Scholar 

  52. F.A. Houle, A reinvestigation of the etch products of Si and XeF2; Doping and pressure effects, J. Appl. Phys. 60: 3018 (1986).

    Article  ADS  Google Scholar 

  53. R.A. Barker, T.M. Mayer and W.C. Pearson, Surface studies of and a mass balance model for Ar+ ion-assisted C12 etching of Si, J. Vac. Sci. Technol.B 1: 37 (1983).

    Article  Google Scholar 

  54. A.W. Kolfschoten, R.A. Haring, A. Haring and A.E. de Vries, Argon-ion assisted etching of silicon by molecular chlorine, J. Appl. Phys. 55: 3813 (1984).

    Article  ADS  Google Scholar 

  55. R.A. Rossen and H.H. Sawin, Time-of-flight and surface residence time measurements for ion-enhanced Si-C12 reaction products, J. Vac. Sci. Technol.A 5: 1595 (1987).

    Article  ADS  Google Scholar 

  56. U. Gerlach-Meyer, J.W. Coburn and E. Kay, Ion-enhanced gas-surface chemistry: The influence of the mass of the incident ion, Surf. Sci. 103: 177 (1981).

    Google Scholar 

  57. F.R. McFeely, J.F. Morar and F.J. Himpsel, Soft x-ray photoemission study of the silicon-fluorine etching reaction, Surf. Sci. 165: 277 (1986).

    Google Scholar 

  58. J.A. Yarmoff and F.R. McFeely, Mechanism of ion-assisted etching of silicon by fluorine atoms, Surf. Sci. 184: 389 (1987).

    Google Scholar 

  59. T. Mizutani, C.J. Dale, W.K. Chu and T.M. Mayer, Surface modification in plasma-assisted etching of silicon, Nucl. Instrum. Meth.B 7: 825 (1985).

    Article  ADS  Google Scholar 

  60. J. Abrefah and D.R. Olander, Reaction of atomic hydrogen with crystalline silicon, Surf. Sci. 209: 291 (1989).

    Google Scholar 

  61. J.C. Angus, H.A. Will and W.S. Stanko, Growth of diamond seed crystals by vapor deposition, J. Apps. Phys. 39: 2915 (1968)

    Article  ADS  Google Scholar 

  62. Y. Hirose and Y. Terasawa, Synthesis of diamond thin films by thermal CVD using organic compounds, Jpn. J. Appl. Phys. 25: L519 (1986).

    Article  ADS  Google Scholar 

  63. D.L. Smith and P.G. Saviano, Plasma beam studies of Si and Al etching mechanisms, J. Vac. Sci. Technol. 21: 768 (1982).

    Article  ADS  Google Scholar 

  64. R.H. Bruce and G.P. Malafsky, High rate anisotropic aluminum etching, J. Electrochem. Soc. 130: 1369 (1983).

    Article  Google Scholar 

  65. R.A.H. Heinecke, Control of relative etch rates of Si02 and Si in plasma etching, Solid State Electron. 18: 1146 (1975).

    Article  ADS  Google Scholar 

  66. J.W. Coburn and H.F. Winters, Plasma etching- A discussion of mechanisms, J. Vac. Sci. Technol. 1. 6: 391 (1979).

    Google Scholar 

  67. J.W. Coburn, Pattern transfer, Superlattices and Microstructures 2: 17 (1986).

    Article  ADS  Google Scholar 

  68. H.W. Lehmann, L. Krausbauer and R. Widmer, Redeposition- A serious problem in rf sputter etching of structures with micrometer dimensions, J. Vac. Sci. Technol. 14: 281 (1977).

    Article  ADS  Google Scholar 

  69. Auciello, Recent progress in understanding ion bombardment-induced synergism in the erosion of carbon due to multispecies impact, Nucl. Instrum. Meth.B 13: 561 (1986).

    Article  ADS  Google Scholar 

  70. R. Yamada, Chemical sputtering of sintered diamond compacts and diamond film, J. Vac. Sci. Technol.A 5: 2. 222 (1987).

    Google Scholar 

  71. N.N. Efremow, M.W. Geis, D.C. Flanders, G.A. Lincoln and E.P. Economou, Ion-beam-assisted etching of. diamond, J. Vac. Sci. Technol.B 3:416 (1985).

    Article  Google Scholar 

  72. G.S. Sandu and W.K. Chu, Reactive ion etching of diamond, Appl. Phys. Lett 55: 437 (1989).

    Google Scholar 

  73. F.D. Egitto, F. Emmi, R.S. Horwath and V. Vukanovic, Plasma etching of organic materials. I. Polyimide in 02-CF4, J. Vac. Sci. Technol.B 3: 893 (1985).

    Article  Google Scholar 

  74. D.L. Flamm and V.M. Donnelly, The design of plasma etchants, Plasma Chem. Plasma Process. 1: 317 (1981).

    Article  Google Scholar 

  75. H. Kasai, M. Kogoma, T. Moriwaki and S. Okazaki, Surface structure estimation by plasma fluorination of amorphous carbon, diamond, graphite and plastic film surfaces, J. Phys.D 19: L225 (1986).

    Article  ADS  Google Scholar 

  76. P. Friedel and S. Courrier, Review of oxidation processes in plasmas, J. Phys. Chem. Solids 44: 353 (1983).

    Article  ADS  Google Scholar 

  77. V.Q. Ho and T. Sugano, Plasma anodization of silicon and its application to the fabrication of devices and integrated circuits, Thin Solid Films 95: 315 (1982).

    Article  ADS  Google Scholar 

  78. J.H. Greiner, Oxidation of lead films by rf sputter etching in an oxygen plasma, J. Appt. Phys. 45: 32 (1974).

    Article  ADS  Google Scholar 

  79. P.C. Jindal, Ion nitriding of steels, J. Vac. Sci. Technol. 15: 313 (1978).

    Article  ADS  Google Scholar 

  80. J.R. Conrad, J.L. Radke, R.A. Dodd, F.J. Worzala. and N.C. Tran, Plasma-source ion implantation technique for surface modification of materials, J. Appl. Phys. 62: 4591 (1987).

    Article  ADS  Google Scholar 

  81. I.H. Wilson, The topography of ion bombarded surfaces, Surface Topography 2: 289 (1989).

    Google Scholar 

  82. J.L. Vossen, Inhibition of chemical sputtering of organics and C by trace amounts of Cu surface contamination, J. Appl. Phys. 47: 544 (1976).

    Article  ADS  Google Scholar 

  83. T. Makino, H. Nakamura and T. Nakashita, Increase in photoconductivity of polysilicon by plasma annealing, J. Appl. Phys. 51: 5868 (1980).

    Article  ADS  Google Scholar 

  84. S. Iwamatsu, Effects of plasma cleaning on the dielectric breakdown in Si02 film on Si, J. Electrochem. Soc. 129: 224 (1982).

    Article  Google Scholar 

  85. C.J. Robinson, The effects of a glow discharge on the nucleation characteristics of Au on polymer substrates, Thin Solid Films 57: 285 (1979).

    Article  ADS  Google Scholar 

  86. T.L. Ward, H.Z. Jung, O. Hinojosa and R.R. Benerito, Effect of cold plasmas on polysaccharides, Surf. Sci. 76: 257 (1978).

    Google Scholar 

  87. D.F. Klemperer and D.J. Williams, Changes in the chemical reactivity of metals exposed to an inert gas glow discharge, Vacuum 33: 301 (1983).

    Article  Google Scholar 

  88. G.J. Sprokel and R.M. Gibson, Liquid crystal alignment produced by rf plasma deposited films, J. Electrochem. Soc. 124: 557 (1977).

    Article  Google Scholar 

  89. J.M. Moran and G.M. Taylor, Plasma pretreatment to improve resist flow properties by reduction of resist flow during postbake, J. Vac. Sci. Technol. 19: 1127 (1981)

    Article  ADS  Google Scholar 

  90. J-S. Maa, D. Meyerhofer, J.J. O’Neill, L. White and P.J. Zanzucchi, Reflectivity reduction by oxygen plasma treatment of capped metallization layer, J Vac. Sci Technol.B 7: 145 (1989).

    Article  Google Scholar 

  91. T.J. Donahue and R. Reif, Silicon epitaxy at 650–800 C using low pressure chemical vapor deposition with and without plasma enhancement, J. Appl. Phys. 57: 2757 (1985).

    Article  ADS  Google Scholar 

  92. J.J. Hsieh, D.E. Ibbotson, J.A. Mucha and D.L. Flamm, Directional deposition of silicon oxide by a plasma enhanced TEOS process, MRS Symposium Proceedings 165: XXX (1989).

    Article  Google Scholar 

  93. D.W. Hess, Plasma-surface interactions in plasma-enhanced chemical vapor deposition, Ann. Rev. Mater. Sci. 16: 163 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  94. S. Veprek, Applications of low pressure plasmas in materials science: Especially chemical vapor deposition, in: “Current Topics in Materials Science,” Vol.4, E. Kaldis, ed., North-Holland, Amsterdam (1980), pp. 151–236.

    Google Scholar 

  95. H. Yasuda, “Plasma Polymerization,” Academic Press, New York (1985).

    Google Scholar 

  96. J.F. Evans and G.W. Prohaska, Preparation of thin polymer films of predictable chemical functionality using plasma chemistry, Thin Solid Films 118: 171 (1984).

    Article  ADS  Google Scholar 

  97. E. Kay and A. Dilks, Metal-containing polymer films produced by simultaneous plasma etching and polymerization: The series of perfluoroalkanes Cn,F2n+2 (n=1,2,3,4), Thin Solid Films 78: 309 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Coburn, J.W. (1991). Reactive Gas Glow Discharges. In: Clausing, R.E., Horton, L.L., Angus, J.C., Koidl, P. (eds) Diamond and Diamond-like Films and Coatings. NATO ASI Series, vol 266. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5967-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5967-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5969-2

  • Online ISBN: 978-1-4684-5967-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics