Skip to main content

Electronic Structure of Diamond, Its Defects and Surfaces

  • Chapter
Diamond and Diamond-like Films and Coatings

Part of the book series: NATO ASI Series ((NSSB,volume 266))

Abstract

Diamond has the potential to become an important high temperature electronic material because it has the highest thermal conductivity, electron velocity and breakdown voltage of any semiconductorl. Additionally, the vapour phase deposition techniques offer the promise of thin film devices and controlled impurity contents2. However, a number of problems must first be resolved, such as an improved n-type doping facility and a further development of the vapour deposition process. To this end, the electronic structure of diamond, its vacancies, interstitials, substitutional impurities and surfaces is reviewed. It is noted that vacancies mediate atomic diffusion, that P is a shallow but low solubility donor and that hydrogen abstraction from the hydrogenated diamond surface is often the rate-limiting step in diamond deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. W. Geis, J Vac Sci Technol A 6 1953 (1988); this volume

    Article  ADS  Google Scholar 

  2. J. C. Angus and C. C. Hayman, Science 241 913 (1988)

    Article  ADS  Google Scholar 

  3. G. S. Painter, D. E. Ellis and A. R. Lubinsky, Phys Rev B 4 3610 (1971)

    Article  ADS  Google Scholar 

  4. J. Ihm, S. G. Louie and M. L. Cohen, Phys Rev B 17 769 (1978)

    Article  ADS  Google Scholar 

  5. G. B. Bachelet, G. A. Baraff and M. Schluter, Phys Rev B 24 4736 (1981)

    Article  ADS  Google Scholar 

  6. F. J. Himpsel, J. F. van der Veen and D. E. Eastman, Phys Rev B 22 1967 (1980)

    Article  ADS  Google Scholar 

  7. L. Reggiani, S. Bosi, C. Canali, and S. F. Kovlov, Solid State Commun 30 333 (1979)

    Article  ADS  Google Scholar 

  8. A. T. Collins and E. C. Lightowlers, in ‘Properties of Diamond’, ed. J. E. Field, Academic Press, London (1979)

    Google Scholar 

  9. F. Nava, C. Canali, C. Jacoboni, L. Reggiani and S. F. Kozlov, Solid State Commun 33 475 (1980)

    Article  ADS  Google Scholar 

  10. M. T. Yin and M. L. Cohen, Phys Rev B 24 6121 (1981);

    Article  ADS  Google Scholar 

  11. M. T. Yin and M. L. Cohen, Phys Rev B 29 6996 (1984)

    Article  ADS  Google Scholar 

  12. M. T. Yin and M. L. Cohen, Phys Rev Lett 50 2006 (1983)

    Article  ADS  Google Scholar 

  13. G. Galli, R. M. Martin, R. Car, M. Parrinello, Phys Rev Let 63 988 (1989)

    Article  ADS  Google Scholar 

  14. N. A. W. Holzwarth, S. G. Louie and S. Rabii, Phys Rev B 26 5382 (1982)

    Article  ADS  Google Scholar 

  15. J. Bernholc, A. Antonellí, T. M. DelSole, Y. Bar-Yam and S. T. Pantelides, Phys Rev Lett 61 2689 (1988)

    Article  ADS  Google Scholar 

  16. S. A. Kajihara, A. Antonelli and J. Bernholc, Mat Res Soc Symp Proc 162 xxx (1990)

    Google Scholar 

  17. R. Car, P. J. Kelly, A. Oshiyama and S. T. Pantelides, Phys Rev Lett 52 1814 (1984);

    Article  ADS  Google Scholar 

  18. R. Car, P. J. Kelly, A. Oshiyama and S. T. Pantelides, Phys Rev Lett 54 360 (1985)

    Article  ADS  Google Scholar 

  19. E. Kaxiras and K. C. Pandey, Phys Rev Lett 61 2693 (1988)

    Article  ADS  Google Scholar 

  20. P. A. Thrower and R. M. Mayer, Phys Stat Solidi A 47 11 (1978)

    Article  ADS  Google Scholar 

  21. M. I. Landstrass and K. V. Ravi, App Phys Lett 55 1391 (1989)

    Article  ADS  Google Scholar 

  22. J. Prins, Phys Rev B 38 5576 (1988)

    Article  ADS  Google Scholar 

  23. J. Prins, App Phys Lett 41 950 (1982)

    Article  ADS  Google Scholar 

  24. N. Setaka, Mat Res Soc Symp Proc 152 3 (1989)

    Article  Google Scholar 

  25. A. E. Alexenko and B. V. Spitsyn; this volume.

    Google Scholar 

  26. W. A. Harrison, ‘Electronic Structure’ ( Freeman, San Francisco, 1979 )

    Google Scholar 

  27. J. P. F. Sellschop, C. C. P. Madiba and H. J. Annegarn, Nucl Inst Methods 168 529 (1980)

    Article  ADS  Google Scholar 

  28. C. G. Van de Walle, P. Denteneer, Y. Bar-Yam and S. T. Pantelides, Phys Rev B 39 10791 (1989)

    Article  Google Scholar 

  29. K. J. Chang and D. J. Chadi, Phys Rev Lett 62 937 (1989);

    Article  ADS  Google Scholar 

  30. K. J. Chang and D. J. Chadi, Phys Rev B 40 11644 (1989)

    Article  ADS  Google Scholar 

  31. P. Briddon, R. Jones and G. M. S. Lister, J Phys C 21 L1027 (1988)

    Article  ADS  Google Scholar 

  32. K. C. Pandey, Phys Rev Lett 47 1913 (1981);

    Article  ADS  Google Scholar 

  33. K. C. Pandey, Phys Rev Lett 49 223 (1982);

    Article  ADS  Google Scholar 

  34. K. C. Pandey, Phys Rev B 25 4338 (1982)

    Article  ADS  Google Scholar 

  35. B. B. Pate, Surf Sci 165 83 (1986)

    Article  ADS  Google Scholar 

  36. D. Vanderbilt and S. G. Louie, Phys Rev B 30 6118 (1984)

    Article  ADS  Google Scholar 

  37. F. J. Himpsel, D. E. Eastman, P. Heimann and J. F. van der Veen, Phys Rev B 24 7270 (1981)

    Article  ADS  Google Scholar 

  38. G. D. Kubiak and K. W. Kolasinski, Phys Rev B 39 1381 (1989)

    Article  ADS  Google Scholar 

  39. A. V. Hamza, G. D. Kubiak and R. H. Stulen, Surf Sci 206 L833 (1988)

    Article  Google Scholar 

  40. J. E. Field and C. J. Freeman, Phil Mag A 43 595 (1981); this volume

    Article  ADS  Google Scholar 

  41. T. R. Anthony, Mat Res Soc Symp Proc 162 xxx (1990); this volume

    Google Scholar 

  42. J. E. Northrup and M. L. Cohen, Phys Rev Lett 49 1349 (1982)

    Article  ADS  Google Scholar 

  43. B. I. Spitsyn, L. L. Bouilov and B. V. Deryagin, J Crystal Growth 52 219 (1981)

    Article  ADS  Google Scholar 

  44. M. Frenklach and K. E. Spear, J Mater Res 3 133 (1988)

    Article  ADS  Google Scholar 

  45. M. Frenklach, this volume; J App Phys 65 5142 (1989)

    Article  ADS  Google Scholar 

  46. D. Huang, M. Frenklach, M. Marconcelli, J Am Chem Soc 92 6379 (1988)

    Google Scholar 

  47. Y. Lion, A. Inspektor and R. Messier, App Phys Let 55 631 (1990)

    ADS  Google Scholar 

  48. P. Bachmann, this volume

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Robertson, J. (1991). Electronic Structure of Diamond, Its Defects and Surfaces. In: Clausing, R.E., Horton, L.L., Angus, J.C., Koidl, P. (eds) Diamond and Diamond-like Films and Coatings. NATO ASI Series, vol 266. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5967-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5967-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5969-2

  • Online ISBN: 978-1-4684-5967-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics