Advertisement

The Role of Tryptophan and Kynurenine Transport in the Catabolism of Tryptophan Through Indoleamine 2,3-Dioxygenase

  • R. G. Knowles
  • N. A. Clarkson
  • C. I. Pogson
  • M. Salter
  • D. S. Duch
  • M. P. Edelstein
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)

Abstract

In 1967, indoleamine 2,3-dioxygenase (IDO) was first reported as being an enzyme capable of cleaving the indole ring of tryptophan (Scheme 1), which was distinct from the tryptophan 2,3-dioxygenase (TDO) found in the liver (Yamamoto and Hayaishi, 1967). Later studies revealed its presence in a range of tissues in mice and rats (Cook et al., 1980; Yoshida et al., 1980), and more recently in man (Yamazaki et al., 1985).

Keywords

Tryptophan Depletion Tryptophan Metabolism Tryptophan Concentration Tryptophan Catabolism WiDr Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, R.R., Borden, E.C., Sondel, P.M., and Lee, C.M., 1987, Effects of interferons and interleukin-2 on tryptophan metabolism in humans, in: “Progress in Tryptophan and Serotonin Research 1986”, Bender, D.A., Joseph, M.H., Kochen, W., and Steinhart, H., eds., de Gruyter, Berlin, pp. 19–26.Google Scholar
  2. Cook, J.S., Pogson, C.I., and Smith, S.A., 1980, Indoleamine 2,3-dioxygenase: a new, rapid, sensitive radiometric assay and its application to the study of the enzyme in rat tissues, Biochem. J., 189: 461–466.PubMedGoogle Scholar
  3. de la Maza, L.M., and Peterson, E.M., 1988, Dependence of the in vitro antiproliferative activity of recombinant human γ-interferon on the concentration of tryptophan in culture medium, Cancer Res., 48: 346–350.PubMedGoogle Scholar
  4. Knowles, R.G., Salter, M., and Pogson, C.I., 1989, Tryptophan degradation and indoleamine 2,3-dioxygenase in MRC-5 fibroblasts, Biochem. Soc. Trans., 17: 539–540.Google Scholar
  5. Ozaki, U., Edelstein, M.P., and Duch, D.S., 1988, Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferonγ, Proc. Natl. Acad. Sci. USA, 85: 1242–1246.PubMedCrossRefGoogle Scholar
  6. Pfefferkorn, E.R., 1984, Interferon blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan, Proc. Natl. Acad. Sci. USA, 81: 908–912.PubMedCrossRefGoogle Scholar
  7. Pfefferkorn, E.R., Eckel, M., and Rebhun, S., 1986a, Interferon suppresses the growth of Toxoplasma gondii in human fibroblasts through starvation for tryptophan, Mol. Biochem. Parasitol., 20: 215–224.PubMedCrossRefGoogle Scholar
  8. Pfefferkorn, E.R., Rebhun, S., and Eckel, M., 1986b, Characterization of an indoleamine 2,3-dioxygenase induced by interferon7 in cultured fibroblasts, J. Interferon Res., 6: 267:279.PubMedCrossRefGoogle Scholar
  9. Salter, M., Knowles, R.G., and Pogson, C.I., 1986a, Transport of the aromatic amino acids into isolated rat liver cells, Biochem. J., 233: 499–506.PubMedGoogle Scholar
  10. Salter, M., Knowles, R.G., and Pogson, C.I., 1986b, Quantification of the importance of individual steps in the control of aromatic amino acid metabolism, Biochem. J., 234: 635–647.PubMedGoogle Scholar
  11. Takikawa, O., Kuroiwa, T., Yamazaki, F., and Kido, R., 1988, Mechanism of interferon7 action, J. Biol. Chem., 263: 2041–2048.PubMedGoogle Scholar
  12. Takikawa, O., Yoshida, R., Kido, R., and Hayaishi, O., 1986, Tryptophan degradation in mice initiated by indoleamine 2,3-dioxygenase, J. Biol. Chem., 261: 3648–3653.PubMedGoogle Scholar
  13. Werner, E.R., Hirsch-Kauffmann, M., Fuchs, D., Hausen, A., Reibnegger, G., Schweiger, M., and Wachter, H., 1987, Interferon-gamma induced degradation of tryptophan by human cells in vitro. Biol. Chem. Hoppe-Seyler, 368: 1407–1412.PubMedCrossRefGoogle Scholar
  14. Yamamoto, S., and Hayaishi, O., 1967, Tryptophan pyrrolase of rabbit intestine, J. Biol. Chem., 242: 5260–5266.PubMedGoogle Scholar
  15. Yamazaki, F., Kuroiwa, T., Takikawa, O., and Kido, R., 1985, Human indolylamine 2,3-dioxygenase, its tissue distribution, and characterization of the placental enzyme, Biochem. J., 230: 635–638.PubMedGoogle Scholar
  16. Yoshida, R., Nukiwa, T., Watanabe, Y., Fujiwara, M., Hirata, F., and Hayaishi, O., 1980, Regulation of indoleamine 2,3-dioxygenase activity in the small intestine and epididymis of mice, Arch. Biochem. Biophys., 203: 343–35PubMedCrossRefGoogle Scholar
  17. Yoshida, R., Imanishi, J., Oku, T., Kishida, T., and Hayaishi, O., 1981a, Induction of pulmonary indoleamine 2,3-dioxygenase by interferon, Proc. Natl. Acad. Sci. USA, 78: 129–132.PubMedCrossRefGoogle Scholar
  18. Yoshida, R., Urade, Y., Nakata, K., Watanabe, Y., and Hayaishi, O., 1981b, Specific induction of indoleamine 2,3-dioxygenase by bacterial lipopolysaccharide in the mouse lung, Arch. Biochem. Biophys., 212: 629–637.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • R. G. Knowles
    • 1
  • N. A. Clarkson
    • 1
  • C. I. Pogson
    • 1
  • M. Salter
    • 1
  • D. S. Duch
    • 2
  • M. P. Edelstein
    • 2
  1. 1.Biochemical SciencesWellcome Research LaboratoriesBeckenhamUK
  2. 2.Research Triangle ParkNorth CarolinaUSA

Personalised recommendations