Regulation of Melatonin Synthesis in the Ovine Pineal Gland

  • M. A. A. Namboodiri
  • H. M. Valivullah
  • J. R. Moffett
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)


Based on studies in the rat, it is now generally believed that pineal serotonin N-acetyltransferase (NAT) activity is the major factor which regulates melatonin synthesis in the pineal gland and its concentration in the circulation on a circadian basis (Axelrod and Zatz, 1977; Klein et al. 1981). NAT activity in the rat increases 50-100-fold at night, causing increased synthesis of melatonin in the pineal gland and about a 10-fold increase in melatonin in the circulation (Reppert and Klein, 1980). The duration of increased melatonin in the circulation is proposed to act as the chemical signal that conveys information about the length of the night to the body. Norepinephrine released from the sympathetic nerve endings in the pineal gland causes the large increase in the NAT activity via a cAMP-dependent mechanism, with alpha and beta adrenergic receptors acting in concert (Klein, 1978).


Tyrosine Hydroxylase Pineal Gland Melatonin Level Melatonin Production Melatonin Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



5-hydroxyindoleacetic acid








5-methoxyindoleacetic acid






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, J., and Zatz, M., 1977, The beta-adrenergic receptors and the regulation of circadian rhythms in the pineal gland, in: “Biochemical Actions of Hormones”, Vol. 4, Litwack, G., ed., Academic Press, New York, pp. 249–268.Google Scholar
  2. Bitman, E.I., Dempsey, R.J., and Karsch, F.J., 1983, Pineal melatonin secretion drives the reproductive response to daylength in ewe, Endocrinology, 113: 2276–2283.CrossRefGoogle Scholar
  3. Deguchi, T., and Barchas, J., 1971, Inhibition of transmethylation of biogenic amines by S-adenosylhomocysteine: enhancement of transmethylation by adenosylhomocysteinase, J. Biol. Chem., 246: 3175–3181.PubMedGoogle Scholar
  4. Feldstein, A., Chang, F.H., and Kucharski, J.M., 1970, Tryptophol, 5-hydroxytryptophol and 5-methoxytryptophol induced sleep in mice, Life Sci., 9: 323–329.PubMedCrossRefGoogle Scholar
  5. Klein, D.C., Auerbach, D., Namboodiri, M.A.A., and Wheler, W.H.T., 1981, Indole metabolism in the mammalian pineal gland, in: “Pineal Gland: Anatomy and Biochemistry”, Vol. 1, Reiter, R.J., ed., CRC Press, Boca Raton, pp. 199-227.Google Scholar
  6. Klein, D.C., 1978, The pineal gland: a model of neuroendocrine regulation, in: “The Hypothalamus”, Reichlin, S., Baldessarini, R.J., and Martin, J.D., eds., Raven Press, New York, pp. 303–327.Google Scholar
  7. Kuwano, R., and Takahashi, Y., 1980, S-Adenosyhomocysteine is bound to pineal hydroxyindole-O-methyltransferase, Life Sci., 27: 1321–1326.PubMedCrossRefGoogle Scholar
  8. Magnussen, I., Dupont, E., Engbaek, E., and Fine Olivarius, B. de, 1978, Post-hypoxic intention myoclonus treated with 5-hydroxytryptophan and an extracerebral decarboxylase inhibitor, Acta Neurol. Scand., 57: 289–295.PubMedCrossRefGoogle Scholar
  9. Mefford, I.N., Chang, P., Klein, D.C., Namboodiri, M.A.A., Sugden, C., and Barchas J.D., 1983, Reciprocal day/night relationship between serotonin oxidation and N-acetylation products in the rat pineal gland, Endocrinology, 113: 1582–1586.PubMedCrossRefGoogle Scholar
  10. Morgan, P.J., Williams, L.M., Lawson, W., and Riddoch, G., 1988, Stimulation of melatonin synthesis in ovine pineals in vitro. J. Neurochem., 50: 7581.CrossRefGoogle Scholar
  11. Namboodiri, M.A.A., Sugden, D., Klein, D.C., Grady, R., and Mefford, I.N., 1985a, Rapid nocturnal increase in ovine pineal N-acetyltransferase activity and melatonin synthesis: effects of cycloheximide, J. Neurochem., 45: 832–835.PubMedCrossRefGoogle Scholar
  12. Namboodiri, M.A.A., Sugden, D., Klein, D.C., and Mefford, I.N., 1983, 5-Hydroxytryptophan elevates serum melatonin, Science, 221: 659–661.PubMedCrossRefGoogle Scholar
  13. Namboodiri, M.A.A., Sugden, D., Klein, D.C., Tamarkin, L., and Mefford, I.N., 1985b, Serum melatonin and pineal indoleamine metabolism in a species with a small day/night N-acetyltransferase rhythm, Comp. Biochem. Physiol., 80B: 731–736.Google Scholar
  14. Reppert, S.M., and Klein, D.C., 1980, Mammalian pineal gland: basic and clinical aspects, in: “The Endocrine Functions of the Brain”, Motta, M., ed., Raven Press, New York, pp. 327–337.Google Scholar
  15. Rollag, M.D., and Niswender, C.D., 1976, Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens, Endocrinology, 98: 482–489.PubMedCrossRefGoogle Scholar
  16. Rudeen, P.K., Reiter, R.J., and Vaughan, M.K., 1975, Pineal serotonin N-acetyltransferase activity in four mammalian species, Neurosci. Lett., 1: 225–229.CrossRefGoogle Scholar
  17. Sugden, D., and Klein, D.C., 1987, Inactivation of rat pineal hydroxyindole-O-methyltransferase by disulfide containing compounds, J. Biol. Chem., 262: 6489–6493.PubMedGoogle Scholar
  18. Sugden, D., Namboodiri, M.A.A., Klein, D.C., Grady Jr., R.K., and Mefford, I.N., 1985a, Ovine indoles: effect of 5-hydroxytryptophan administration, J. Neurochem., 44: 769–772.PubMedCrossRefGoogle Scholar
  19. Sugden, D., Namboodiri, M.A.A., Klein, D.C., Pierce, J.E., Grady Jr., R., and Mefford, I.N., 1985b, Ovine pineal α-adrenoceptors: characterization and evidence for a functional role in the regulation of serum melatonin, Endocrinology, 116: 1960–1967.PubMedCrossRefGoogle Scholar
  20. Van Praag, H.M., 1981, Management of depression with serotonin precursors, Biol. Psych., 16: 291–310.Google Scholar
  21. Vanecek, J., and Illnerova, H., 1982, Effect of light at night on the pineal rhythm and N-acetyltransferase activity in the Syrian hamster Mesocricetus auratus, Experientia, 38: 513–514.PubMedCrossRefGoogle Scholar
  22. Young, S.N., and Anderson, C.M., 1982, Factors affecting melatonin, 5-hydroxytryptophol, 5-hydroxyindoleacetic acid, 5-hydroxytryptamine and tryptophan in rat pineal gland, Neuroendocrinology, 35: 464–468.PubMedCrossRefGoogle Scholar
  23. Zigmond, R.E., Schwarzschild, M.A., and Rittenhouse, A.R., 1989, Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters by phosphorylation, Ann. Rev. Neurosci., 12: 415–461.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. A. A. Namboodiri
    • 1
  • H. M. Valivullah
    • 1
  • J. R. Moffett
    • 1
  1. 1.Department of BiologyGeorgetown UniversityWashingtonUSA

Personalised recommendations